CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET

被引:0
作者
Zhang, Fanyang [1 ]
Fan, Zhang [1 ]
机构
[1] Shanghai Univ Engn Sci, Lab Intelligent Control & Robot, Shanghai, Peoples R China
关键词
CBAM; deep learning; medical image segmentation; Swin transformer; U-net;
D O I
10.1002/ima.70072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Medical image segmentation is a crucial process in medical image analysis, with convolutional neural network (CNN)-based methods achieving notable success in recent years. Among these, U-Net has gained widespread use due to its simple yet effective architecture. However, CNNs still struggle to capture global, long-range semantic information. To address this limitation, we present CS U-NET, a novel method built upon Swin-U-Net, which integrates spatial and contextual attention mechanisms. This hybrid approach combines the strengths of both transformers and U-Net architectures to enhance segmentation performance. In this framework, tokenized image patches are processed through a transformer-based U-shaped encoder-decoder, enabling the learning of both local and global semantic features via skip connections. Our method achieves a Dice Similarity Coefficient of 78.64% and a 95% Hausdorff distance of 21.25 on the Synapse multiorgan segmentation dataset, outperforming Trans-U-Net and other state-of-the-art U-Net variants by 4% and 6%, respectively. The experimental results highlight the significant improvements in prediction accuracy and edge detail preservation provided by our approach.
引用
收藏
页数:10
相关论文
共 25 条
[1]   ATTENTION SWIN U-NET: CROSS-CONTEXTUAL ATTENTION MECHANISM FOR SKIN LESION SEGMENTATION [J].
Aghdam, Ehsan Khodapanah ;
Azad, Reza ;
Zarvani, Maral ;
Merhof, Dorit .
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
[2]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[3]   A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images [J].
Chen, Hesheng ;
He, Yi ;
Zhang, Lifeng ;
Yao, Sheng ;
Yang, Wang ;
Fang, Yumin ;
Liu, Yaoxiang ;
Gao, Binghai .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) :552-577
[4]   Impact of attention mechanisms for organ segmentation in chest x-ray images over U-Net model [J].
de la Sotta, Tomas ;
Chang, Violeta ;
Pizarro, Benjamin ;
Henriquez, Hector ;
Alvear, Nicolas ;
Saavedra, Jose M. .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) :49261-49283
[5]   SUNet: Swin Transformer UNet for Image Denoising [J].
Fan, Chi-Mao ;
Liu, Tsung-Jung ;
Liu, Kuan-Hsien .
2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, :2333-2337
[6]   MLU-Net: A Multi-Level Lightweight U-Net for Medical Image Segmentation Integrating Frequency Representation and MLP-Based Methods [J].
Feng, Liping ;
Wu, Kepeng ;
Pei, Ziyi ;
Weng, Tengfei ;
Han, Qi ;
Meng, Lun ;
Qian, Xin ;
Xu, Hongxiang ;
Qiu, Zicheng ;
Li, Zhong ;
Tian, Yuan ;
Liang, Guanzhong ;
Hao, Yaojun .
IEEE ACCESS, 2024, 12 :20734-20751
[7]   Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation [J].
He, Xin ;
Zhou, Yong ;
Zhao, Jiaqi ;
Zhang, Di ;
Yao, Rui ;
Xue, Yong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[8]   MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation [J].
Ibtehaz, Nabil ;
Rahman, M. Sohel .
NEURAL NETWORKS, 2020, 121 :74-87
[9]   An attention-based U-Net for detecting deforestation within satellite sensor imagery [J].
John, David ;
Zhang, Ce .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 107
[10]   Segmentation of ovarian cyst using improved U-NET and hybrid deep learning model [J].
Kamala, C. ;
Shivaram, Joshi Manisha .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) :42645-42679