Metal-Organic Coordination Enhanced Metallopolymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries

被引:12
作者
Zhao, Pei-Chen [1 ]
Wang, Yaoda [1 ]
Huang, Qi-Sheng [1 ]
Jin, Zhong [1 ]
Li, Cheng-Hui [1 ]
机构
[1] Nanjing Univ, Res Inst Green Chem & Engn, Tianchang New Mat & Energy Technol Res Ctr, Sch Chem & Chem Engn,State Key Lab Coordinat Chem,, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state Li Metal Batteries; Metal-organic coordination; Mo-polyoxometalates; Metallopolymers; HIGH-ENERGY; POLYMER ELECTROLYTES; DESIGN;
D O I
10.1002/anie.202416897
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical application of polymer electrolytes is seriously hindered by the inferior Li+ ionic conductivity, low Li+ transference number (t(Li+)), and poor interfacial stability. Herein, a structurally novel metallopolymer is designed and synthesized by exploiting a molybdenum (Mo) paddle-wheel complex as a tetratopic linker to bridge organic and inorganic moieties at molecular level. The prepared metallopolymer possesses combined merits of outstanding mechanical and thermal stability, as well as a low glass transition temperature (T-g <-50 degrees C). Based on this metallopolymer, an advanced metal-organic coordination enhanced metallopolymer electrolyte (MPE) is developed for constructing high-performance solid-state lithium metal batteries (LMBs). Due to the unsaturated coordination of Mo atoms, the uniformly distributed Mo-polyoxometalates (Mo-POMs) in metallopolymer skeleton can effectively immobilize anions (bis(fluorosulfonyl)imide anions, FSI-) and promote the dissociation of Li salts. Moreover, dynamic metal-organic coordination bonds endow the MPE with re-processability and self-healing, enabling it to accommodate electrode volume changes and maintain good interfacial contact. Consequently, the MPE achieves a competitive ionic conductivity of 0.712 mS cm(-1) (25 degrees C), a high t(Li+) (0.625), and a wide electrochemical stability window (>5.0 V). This study presents a unique MPE design based on metal-organic coordination enhanced strategy, providing a promising solution for developing wide-temperature solid-state LMBs.
引用
收藏
页数:14
相关论文
共 49 条
[41]   Solvation-Tailored PVDF-Based Solid-State Electrolyte for High-Voltage Lithium Metal Batteries [J].
Yang, Wujie ;
Liu, Yiwen ;
Sun, Xinyi ;
He, Zhiying ;
He, Ping ;
Zhou, Haoshen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (18)
[42]   Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group? [J].
Yang, Xiaofei ;
Jiang, Ming ;
Gao, Xuejie ;
Bao, Danni ;
Sun, Qian ;
Holmes, Nathaniel ;
Duan, Hui ;
Mukherjee, Sankha ;
Adair, Keegan ;
Zhao, Changtai ;
Liang, Jianwen ;
Li, Weihan ;
Li, Junjie ;
Liu, Yang ;
Huang, Huan ;
Zhang, Li ;
Lu, Shigang ;
Lu, Qingwen ;
Li, Ruying ;
Singh, Chandra Veer ;
Sun, Xueliang .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (05) :1318-1325
[43]   Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite-Free Solid-State Lithium Metal Battery [J].
Ye, Xue ;
Liang, Jianneng ;
Du, Baorong ;
Li, Yongliang ;
Ren, Xiangzhong ;
Wu, Dazhuan ;
Ouyang, Xiaoping ;
Zhang, Qianling ;
Liu, Jianhong .
ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (06)
[44]   Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries [J].
Yu, Zhiao ;
Wang, Hansen ;
Kong, Xian ;
Huang, William ;
Tsao, Yuchi ;
Mackanic, David G. ;
Wang, Kecheng ;
Wang, Xinchang ;
Huang, Wenxiao ;
Choudhury, Snehashis ;
Zheng, Yu ;
Amanchukwu, Chibueze, V ;
Hung, Samantha T. ;
Ma, Yuting ;
Lomeli, Eder G. ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
NATURE ENERGY, 2020, 5 (07) :526-533
[45]   A Nonflammable Electrolyte for High-Voltage Lithium Metal Batteries [J].
Zhang, Guangzhao ;
Li, Jiawei ;
Wang, Qingrong ;
Wang, Hui ;
Wang, Jun ;
Yu, Kai ;
Chang, Jian ;
Wang, Chaoyang ;
Hong, Xiang ;
Ma, Qiang ;
Deng, Yonghong .
ACS ENERGY LETTERS, 2023, 8 (07) :2868-2877
[46]   Towards practical lithium-metal anodes [J].
Zhang, Xin ;
Yang, Yongan ;
Zhou, Zhen .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (10) :3040-3071
[47]   Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries [J].
Zhao, Qing ;
Liu, Xiaotun ;
Stalin, Sanjuna ;
Khan, Kasim ;
Archer, Lynden A. .
NATURE ENERGY, 2019, 4 (05) :365-373
[48]   Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode [J].
Zhao, Zedong ;
Chen, Wuji ;
Impeng, Sarawoot ;
Li, Mengxiong ;
Wang, Rong ;
Liu, Yicheng ;
Zhang, Long ;
Dong, Lei ;
Unruangsri, Junjuda ;
Peng, Chengxin ;
Wang, Changchun ;
Namuangruk, Supawadee ;
Lee, Sang-Young ;
Wang, Yonggang ;
Lu, Hongbin ;
Guo, Jia .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (06) :3459-3467
[49]   Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects [J].
Zhou, Dong ;
Shanmukaraj, Devaraj ;
Tkacheva, Anastasia ;
Armand, Michel ;
Wang, Guoxiu .
CHEM, 2019, 5 (09) :2326-2352