Metal-Organic Coordination Enhanced Metallopolymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries

被引:12
作者
Zhao, Pei-Chen [1 ]
Wang, Yaoda [1 ]
Huang, Qi-Sheng [1 ]
Jin, Zhong [1 ]
Li, Cheng-Hui [1 ]
机构
[1] Nanjing Univ, Res Inst Green Chem & Engn, Tianchang New Mat & Energy Technol Res Ctr, Sch Chem & Chem Engn,State Key Lab Coordinat Chem,, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state Li Metal Batteries; Metal-organic coordination; Mo-polyoxometalates; Metallopolymers; HIGH-ENERGY; POLYMER ELECTROLYTES; DESIGN;
D O I
10.1002/anie.202416897
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical application of polymer electrolytes is seriously hindered by the inferior Li+ ionic conductivity, low Li+ transference number (t(Li+)), and poor interfacial stability. Herein, a structurally novel metallopolymer is designed and synthesized by exploiting a molybdenum (Mo) paddle-wheel complex as a tetratopic linker to bridge organic and inorganic moieties at molecular level. The prepared metallopolymer possesses combined merits of outstanding mechanical and thermal stability, as well as a low glass transition temperature (T-g <-50 degrees C). Based on this metallopolymer, an advanced metal-organic coordination enhanced metallopolymer electrolyte (MPE) is developed for constructing high-performance solid-state lithium metal batteries (LMBs). Due to the unsaturated coordination of Mo atoms, the uniformly distributed Mo-polyoxometalates (Mo-POMs) in metallopolymer skeleton can effectively immobilize anions (bis(fluorosulfonyl)imide anions, FSI-) and promote the dissociation of Li salts. Moreover, dynamic metal-organic coordination bonds endow the MPE with re-processability and self-healing, enabling it to accommodate electrode volume changes and maintain good interfacial contact. Consequently, the MPE achieves a competitive ionic conductivity of 0.712 mS cm(-1) (25 degrees C), a high t(Li+) (0.625), and a wide electrochemical stability window (>5.0 V). This study presents a unique MPE design based on metal-organic coordination enhanced strategy, providing a promising solution for developing wide-temperature solid-state LMBs.
引用
收藏
页数:14
相关论文
共 49 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[3]   Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications [J].
Chen, Shuru ;
Dai, Fang ;
Cai, Mei .
ACS ENERGY LETTERS, 2020, 5 (10) :3140-3151
[4]   Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries [J].
Cui, Guanglei .
MATTER, 2020, 2 (04) :805-815
[5]   Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries [J].
Ding, Peipei ;
Wu, Lingqiao ;
Lin, Zhiyuan ;
Lou, Chenjie ;
Tang, Mingxue ;
Guo, Xianwei ;
Guo, Hongxia ;
Wang, Yongtao ;
Yu, Haijun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (03) :1548-1556
[6]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[7]   Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries [J].
Gao, Zhonghui ;
Sun, Huabin ;
Fu, Lin ;
Ye, Fangliang ;
Zhang, Yi ;
Luo, Wei ;
Huang, Yunhui .
ADVANCED MATERIALS, 2018, 30 (17)
[8]   Scavenging Materials to Stabilize LiPF6-Containing Carbonate-Based Electrolytes for Li-Ion Batteries [J].
Han, Jung-Gu ;
Kim, Koeun ;
Lee, Yongwon ;
Choi, Nam-Soon .
ADVANCED MATERIALS, 2019, 31 (20)
[9]   Conformational Regulation of Dielectric Poly(Vinylidene Fluoride)-Based Solid-State Electrolytes for Efficient Lithium Salt Dissociation and Lithium-Ion Transportation [J].
Huang, Yan-Fei ;
Zeng, Jian-Ping ;
Li, Shuang-Feng ;
Dai, Chen ;
Liu, Jun-Feng ;
Liu, Chen ;
He, Yan-Bing .
ADVANCED ENERGY MATERIALS, 2023, 13 (15)
[10]   Mussel-Inspired Self-Healing Metallopolymers for Silicon Nanoparticle Anodes [J].
Jeong, You Kyeong ;
Choi, Jang Wook .
ACS NANO, 2019, 13 (07) :8364-8373