DC algorithm for estimation of sparse Gaussian graphical models

被引:0
|
作者
Shiratori, Tomokaze [1 ]
Takano, Yuichi [2 ]
机构
[1] Univ Tsukuba, Grad Sch Sci & Technol, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Inst Syst & Informat Engn, Tsukuba, Ibaraki, Japan
来源
PLOS ONE | 2024年 / 19卷 / 12期
关键词
VARIABLE SELECTION; MATRIX ESTIMATION; ADAPTIVE LASSO; COVARIANCE; REGRESSION; REGULARIZATION; SHRINKAGE;
D O I
10.1371/journal.pone.0315740
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sparse estimation of a Gaussian graphical model (GGM) is an important technique for making relationships between observed variables more interpretable. Various methods have been proposed for sparse GGM estimation, including the graphical lasso that uses the & ell;1 norm regularization term, and other methods that use nonconvex regularization terms. Most of these methods approximate the & ell;0 (pseudo) norm by more tractable functions; however, to estimate more accurate solutions, it is preferable to directly use the & ell;0 norm for counting the number of nonzero elements. To this end, we focus on sparse estimation of GGM with the cardinality constraint based on the & ell;0 norm. Specifically, we convert the cardinality constraint into an equivalent constraint based on the largest-K norm, and reformulate the resultant constrained optimization problem into an unconstrained penalty form with a DC (difference of convex functions) representation. To solve this problem efficiently, we design a DC algorithm in which the graphical lasso algorithm is repeatedly executed to solve convex optimization subproblems. Experimental results using two synthetic datasets show that our method achieves results that are comparable to or better than conventional methods for sparse GGM estimation. Our method is particularly advantageous for selecting true edges when cross-validation is used to determine the number of edges. Moreover, our DC algorithm converges within a practical time frame compared to the graphical lasso.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] JOINT ESTIMATION OF SPARSE MULTIVARIATE REGRESSION AND CONDITIONAL GRAPHICAL MODELS
    Wang, Junhui
    STATISTICA SINICA, 2015, 25 (03) : 831 - 851
  • [32] Sparse Estimation of Conditional Graphical Models With Application to Gene Networks
    Li, Bing
    Chun, Hyonho
    Zhao, Hongyu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 152 - 167
  • [33] Robust sparse Gaussian graphical modeling
    Hirose, Kei
    Fujisawa, Hironori
    Sese, Jun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 161 : 172 - 190
  • [34] ASYMPTOTIC NORMALITY AND OPTIMALITIES IN ESTIMATION OF LARGE GAUSSIAN GRAPHICAL MODELS
    Ren, Zhao
    Sun, Tingni
    Zhang, Cun-Hui
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2015, 43 (03): : 991 - 1026
  • [35] Approximate Bayesian estimation in large coloured graphical Gaussian models
    Li, Qiong
    Gao, Xin
    Massam, Helene
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (01): : 176 - 203
  • [36] A Novel Sparse Overlapping Modularized Gaussian Graphical Model for Functional Connectivity Estimation
    Zhu, Zhiyuan
    Zhen, Zonglei
    Wu, Xia
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 : 304 - 315
  • [37] On Joint Estimation of Gaussian Graphical Models for Spatial and Temporal Data
    Lin, Zhixiang
    Wang, Tao
    Yang, Can
    Zhao, Hongyu
    BIOMETRICS, 2017, 73 (03) : 769 - 779
  • [38] Consistent multiple changepoint estimation with fused Gaussian graphical models
    Gibberd, A.
    Roy, S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (02) : 283 - 309
  • [39] Quasi-Bayesian estimation of large Gaussian graphical models
    Atchade, Yves F.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 656 - 671
  • [40] Bayesian Uncertainty Estimation for Gaussian Graphical Models and Centrality Indices
    Jongerling, J.
    Epskamp, S.
    Williams, D. R.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 58 (02) : 311 - 339