DC algorithm for estimation of sparse Gaussian graphical models

被引:0
|
作者
Shiratori, Tomokaze [1 ]
Takano, Yuichi [2 ]
机构
[1] Univ Tsukuba, Grad Sch Sci & Technol, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Inst Syst & Informat Engn, Tsukuba, Ibaraki, Japan
来源
PLOS ONE | 2024年 / 19卷 / 12期
关键词
VARIABLE SELECTION; MATRIX ESTIMATION; ADAPTIVE LASSO; COVARIANCE; REGRESSION; REGULARIZATION; SHRINKAGE;
D O I
10.1371/journal.pone.0315740
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sparse estimation of a Gaussian graphical model (GGM) is an important technique for making relationships between observed variables more interpretable. Various methods have been proposed for sparse GGM estimation, including the graphical lasso that uses the & ell;1 norm regularization term, and other methods that use nonconvex regularization terms. Most of these methods approximate the & ell;0 (pseudo) norm by more tractable functions; however, to estimate more accurate solutions, it is preferable to directly use the & ell;0 norm for counting the number of nonzero elements. To this end, we focus on sparse estimation of GGM with the cardinality constraint based on the & ell;0 norm. Specifically, we convert the cardinality constraint into an equivalent constraint based on the largest-K norm, and reformulate the resultant constrained optimization problem into an unconstrained penalty form with a DC (difference of convex functions) representation. To solve this problem efficiently, we design a DC algorithm in which the graphical lasso algorithm is repeatedly executed to solve convex optimization subproblems. Experimental results using two synthetic datasets show that our method achieves results that are comparable to or better than conventional methods for sparse GGM estimation. Our method is particularly advantageous for selecting true edges when cross-validation is used to determine the number of edges. Moreover, our DC algorithm converges within a practical time frame compared to the graphical lasso.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] ASYMPTOTIC NORMALITY AND OPTIMALITIES IN ESTIMATION OF LARGE GAUSSIAN GRAPHICAL MODELS
    Ren, Zhao
    Sun, Tingni
    Zhang, Cun-Hui
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2015, 43 (03) : 991 - 1026
  • [2] JOINT ESTIMATION OF SPARSE MULTIVARIATE REGRESSION AND CONDITIONAL GRAPHICAL MODELS
    Wang, Junhui
    STATISTICA SINICA, 2015, 25 (03) : 831 - 851
  • [3] FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS
    Rajaratnam, Bala
    Massam, Helene
    Carvalho, Carlos M.
    ANNALS OF STATISTICS, 2008, 36 (06) : 2818 - 2849
  • [4] Joint Estimation of Multiple Conditional Gaussian Graphical Models
    Huang, Feihu
    Chen, Songcan
    Huang, Sheng-Jun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (07) : 3034 - 3046
  • [5] Multiple Gaussian graphical estimation with jointly sparse penalty
    Tao, Qinghua
    Huang, Xiaolin
    Wang, Shuning
    Xi, Xiangming
    Li, Li
    SIGNAL PROCESSING, 2016, 128 : 88 - 97
  • [6] A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL FOR ANALYSIS OF GENETICAL GENOMICS DATA
    Yin, Jianxin
    Li, Hongzhe
    ANNALS OF APPLIED STATISTICS, 2011, 5 (04) : 2630 - 2650
  • [7] Fitting very large sparse Gaussian graphical models
    Kiiveri, Harri
    de Hoog, Frank
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (09) : 2626 - 2636
  • [8] INNOVATED SCALABLE EFFICIENT ESTIMATION IN ULTRA-LARGE GAUSSIAN GRAPHICAL MODELS
    Fan, Yingying
    Lv, Jinchi
    ANNALS OF STATISTICS, 2016, 44 (05) : 2098 - 2126
  • [9] The cluster graphical lasso for improved estimation of Gaussian graphical models
    Tan, Kean Ming
    Witten, Daniela
    Shojaie, Ali
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 23 - 36
  • [10] Joint estimation of multiple dependent Gaussian graphical models with applications to mouse genomics
    Xie, Yuying
    Liu, Yufeng
    Valdar, William
    BIOMETRIKA, 2016, 103 (03) : 493 - 511