Utilizing natural language processing to identify pediatric patients experiencing status epilepticus

被引:0
作者
Puckett, Molly Ann [1 ]
Chafjiri, Fatemeh Mohammad Alizadeh [1 ]
Gettings, Jennifer, V
Landschaft, Assaf [2 ,3 ]
Loddenkemper, Tobias [1 ]
机构
[1] Harvard Med Sch, Boston Childrens Hosp, Div Epilepsy & Clin Neurophysiol, 300 Longwood Ave, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston Childrens Hosp, Boston, MA USA
[3] Fraunhofer Inst Intelligent Anal & Informat Syst I, Schloss Birlinghoven 1, D-53757 St Augustin, Germany
来源
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY | 2025年 / 125卷
关键词
Natural language processing; Status epilepticus; Pediatric; Electronic Health Record; Seizure; CONVULSIVE STATUS EPILEPTICUS;
D O I
10.1016/j.seizure.2025.01.008
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose: Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review. Methods: We reviewed EHRs of patients aged 1 month to 21 years from Boston Children's Hospital (BCH). We included all patients with convulsive ESE or RSE during admission. We employed and validated a pre-trained NLP tool, Document review Tool (DrT), to identify patients from 2013-2020, excluding training years (2017-2019). DrT notes a machine-learning score based on a support vector machine (SVM) and bag-of-n-grams. Higher scores indicated more likely ESE/RSE cases. To further evaluate the effectiveness of DrT-assisted review, we compared the results to human-reviewed notes from the pediatric Status Epilepticus Research Group (pSERG) consortium at BCH. Results: The pre-trained algorithm identified 170 patients with RSE using DrT (Sensitivity: 98.8%), compared to 116 patients identified during human review (Sensitivity: 67.4%). Additionally, we identified 207 patients with ESE using DrT (Sensitivity: 99.5%), compared to 91 patients identified using human review (Sensitivity: 43.8%). Overall, DrT missed 3 cases (2 RSE and 1 ESE cases) that were identified during human review and identified 173 cases (56 RSE and 117 ESE cases) that were not found during the human review. Conclusion: DrT-assisted manual review demonstrated higher sensitivity in identifying patients with ESE and RSE than the current standard of human review. This suggests that in contexts characterized by resource constraints NLP-related software like DrT can considerably enhance patient identification for research studies, treatment protocols, and preventative care interventions.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 40 条
[1]   Text mining applications in psychiatry: a systematic literature review [J].
Abbe, Adeline ;
Grouin, Cyril ;
Zweigenbaum, Pierre ;
Falissard, Bruno .
INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2016, 25 (02) :86-100
[2]   Pediatric status epilepticus management [J].
Abend, Nicholas S. ;
Loddenkemper, Tobias .
CURRENT OPINION IN PEDIATRICS, 2014, 26 (06) :668-674
[3]   Retrospective observational study on hospital readmission for status epilepticus in the United States over 2016 [J].
Amengual-Gual, Marta ;
Fernandez, Ivan Sanchez ;
Vasquez, Alejandra ;
Loddenkemper, Tobias .
EPILEPSIA, 2020, 61 (07) :1386-1396
[4]  
[Anonymous], A European Green Deal. 2020. European Commission. [ONLINE] Available at: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. [Accessed 5 November 2020].
[5]   A review of medical terminology standards and structured reporting [J].
Awaysheh, Abdullah ;
Wilcke, Jeffrey ;
Elvinger, Francois ;
Rees, Loren ;
Fan, Weiguo ;
Zimmerman, Kurt .
JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, 2018, 30 (01) :17-25
[6]   Natural language processing for identification of refractory status epilepticus in children [J].
Chafjiri, Fatemeh Mohammad Alizadeh ;
Reece, Latania ;
Voke, Lillian ;
Landschaft, Asaf ;
Clark, Justice ;
Kimia, Amir A. ;
Loddenkemper, Tobias .
EPILEPSIA, 2023, 64 (12) :3227-3237
[7]   Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study [J].
Chin, Richard F. M. ;
Neville, Brian G. R. ;
Peckham, Catherine ;
Wade, Angie ;
Bedford, Helen ;
Scott, Rod C. .
LANCET NEUROLOGY, 2008, 7 (08) :696-703
[8]   Natural language processing for identification of hypertrophic cardiomyopathy patients from cardiac magnetic resonance reports [J].
Dewaswala, Nakeya ;
Chen, David ;
Bhopalwala, Huzefa ;
Kaggal, Vinod C. ;
Murphy, Sean P. ;
Bos, J. Martijn ;
Geske, Jeffrey B. ;
Gersh, Bernard J. ;
Ommen, Steve R. ;
Araoz, Philip A. ;
Ackerman, Michael J. ;
Arruda-Olson, Adelaide M. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
[9]   Minimum redundancy feature selection from microarray gene expression data [J].
Ding, C ;
Peng, HC .
PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, :523-528
[10]   Bacteremia in Children With Fever and Acute Lower Extremity Pain [J].
El Helou, Rachelle ;
Landschaft, Assaf ;
Harper, Marvin B. ;
Kimia, Amir A. .
PEDIATRICS, 2023, 151 (05)