CT-based radiomics analysis for prediction of pathological subtypes of lung adenocarcinoma

被引:2
作者
Shao, Yinglong [1 ]
Wu, Xiaoming [2 ]
Wang, Bo [2 ]
Lei, Pengyu [1 ]
Chen, Yongchao [1 ]
Xu, Xiaomei [1 ]
Lai, Xiaobo [1 ]
Xu, Jian [1 ]
Wang, Jianqing [1 ,3 ]
机构
[1] Zhejiang Chinese Med Univ, Sch Med Technol & Informat Engn, Hangzhou 310053, Peoples R China
[2] Wenzhou Med Univ, Dept Intervent Radiol, Jinhua Peoples Hosp, Jinhua 321000, Peoples R China
[3] Zhejiang Chinese Med Univ, Zhejiang Key Lab Blood Stasis Toxin Syndrome, Hangzhou 310053, Peoples R China
关键词
Radiomics; Lung adenocarcinoma; Machine learning; Classification; Random forest; INTERNATIONAL ASSOCIATION; CANCER; CLASSIFICATION; NODULES; PROGNOSIS; FEATURES; SOCIETY;
D O I
10.1016/j.jrras.2024.101174
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: Lung cancer is a leading cause of cancer-related deaths worldwide, and its early and accurate diagnosis is crucial for improving patient survival. This paper developed an artificial intelligence (AI) model based on machine learning combined with radiomics for predicting the pathologic type of ground glass nodules (GGN). It explored its potential and challenges in practical applications. Methods: A total of 179 GGN patients with postoperative pathologically confirmed lung adenocarcinoma from June 2022 to June 2024 were collected from a hospital, including 22 cases of atypical adenomatous hyperplasia (AAH), 61 cases of adenocarcinoma in situ (AIS), 55 cases of invasive adenocarcinoma (IAC), and 41 cases of minimally invasive adenocarcinoma (MIA). Two experienced radiologists outlined the imaging data's regions of interest (ROI). Radiomic features were extracted and selected through normalization, mutual information, Spearman correlation coefficient, recursive feature elimination, and LASSO regression. Different machine learning models were developed and the best model was determined based on classification accuracy. Results: Different machine learning models were trained and tested, and a variety of deep learning models were selected for comparison, among which Random Forest had the highest accuracy of 83.3%, and the AUC value of 0.892(95%CI, 0.846-0.923) in recognizing lung adenocarcinoma types. The AUC values reached 0.92 and 0.94 respectively in diagnosing AIS and IAC. Conclusion: Radiomics combined with machine learning models, such as Random Forest, outperform average physician diagnostic accuracy in identifying lung adenocarcinoma types. The model is valuable for early and precise lung adenocarcinoma diagnosis, enhancing clinical decision-making.
引用
收藏
页数:11
相关论文
共 47 条
[31]   Impact of cryoablation on operative outcomes in thoracotomy patients [J].
Pourak, Kian ;
Kubiak, Rachel ;
Arivoli, Kumaran ;
Lagisetty, Kiran ;
Lynch, William ;
Lin, Jules ;
Chang, Andrew ;
Reddy, Rishindra M. .
INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY, 2024, 38 (02)
[32]   Validation Study of the International Association for the Study of Lung Cancer Histologic Grading System of Invasive Lung Adenocarcinoma [J].
Rokutan-Kurata, Mariyo ;
Yoshizawa, Akihiko ;
Ueno, Kentaro ;
Nakajima, Naoki ;
Terada, Kazuhiro ;
Hamaji, Masatsugu ;
Sonobe, Makoto ;
Menju, Toshi ;
Date, Hiroshi ;
Morita, Satoshi ;
Haga, Hironori .
JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (10) :1753-1758
[33]   The 2015 World Health Organization Classification of Lung Tumors Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification [J].
Travis, William D. ;
Brambilla, Elisabeth ;
Nicholson, Andrew G. ;
Yatabe, Yasushi ;
Austin, John H. M. ;
Beasley, Mary Beth ;
Chirieac, Lucian. R. ;
Dacic, Sanja ;
Duhig, Edwina ;
Flieder, Douglas B. ;
Geisinger, Kim ;
Hirsch, Fred R. ;
Ishikawa, Yuichi ;
Kerr, Keith M. ;
Noguchi, Masayuki ;
Pelosi, Giuseppe ;
Powell, Charles A. ;
Tsao, Ming Sound ;
Wistuba, Ignacio .
JOURNAL OF THORACIC ONCOLOGY, 2015, 10 (09) :1243-1260
[34]   International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma [J].
Travis, William D. ;
Brambilla, Elisabeth ;
Noguchi, Masayuki ;
Nicholson, Andrew G. ;
Geisinger, Kim R. ;
Yatabe, Yasushi ;
Beer, David G. ;
Powell, Charles A. ;
Riely, Gregory J. ;
Van Schil, Paul E. ;
Garg, Kavita ;
Austin, John H. M. ;
Asamura, Hisao ;
Rusch, Valerie W. ;
Hirsch, Fred R. ;
Scagliotti, Giorgio ;
Mitsudomi, Tetsuya ;
Huber, Rudolf M. ;
Ishikawa, Yuichi ;
Jett, James ;
Sanchez-Cespedes, Montserrat ;
Sculier, Jean-Paul ;
Takahashi, Takashi ;
Tsuboi, Masahiro ;
Vansteenkiste, Johan ;
Wistuba, Ignacio ;
Yang, Pan-Chyr ;
Aberle, Denise ;
Brambilla, Christian ;
Flieder, Douglas ;
Franklin, Wilbur ;
Gazdar, Adi ;
Gould, Michael ;
Hasleton, Philip ;
Henderson, Douglas ;
Johnson, Bruce ;
Johnson, David ;
Kerr, Keith ;
Kuriyama, Keiko ;
Lee, Jin Soo ;
Miller, Vincent A. ;
Petersen, Iver ;
Roggli, Victor ;
Rosell, Rafael ;
Saijo, Nagahiro ;
Thunnissen, Erik ;
Tsao, Ming ;
Yankelewitz, David .
JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (02) :244-285
[35]   Development of unenhanced CT-based imaging signature for BAP1 mutation status prediction in malignant pleural mesothelioma: Consideration of 2D and 3D segmentation [J].
Xie, Xiao-Jie ;
Liu, Si-Yun ;
Chen, Jian-You ;
Zhao, Yi ;
Jiang, Jie ;
Wu, Li ;
Zhang, Xing-Wen ;
Wu, Yi ;
Duan, Hui ;
He, Bing ;
Luo, Heng ;
Han, Dan .
LUNG CANCER, 2021, 157 :30-39
[36]   Multiple bilateral pulmonary epithelioid hemangioendothelioma mimicking metastatic lung cancer: case report and literature review [J].
Xiong, Wenji ;
Wang, Yanbo ;
Ma, Xiaobo ;
Ding, Xiaobo .
JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2020, 48 (04)
[37]   A multi-organ cancer study of the classification performance using 2D and 3D image features in radiomics analysis [J].
Xu, Lei ;
Yang, Pengfei ;
Yen, Eric Alexander ;
Wan, Yidong ;
Jiang, Yangkang ;
Cao, Zuozhen ;
Shen, Xiaoyong ;
Wu, Yan ;
Wang, Jing ;
Luo, Chen ;
Niu, Tianye .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (21)
[38]   Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging [J].
Xu, Yiwen ;
Hosny, Ahmed ;
Zeleznik, Roman ;
Parmar, Chintan ;
Coroller, Thibaud ;
Franco, Idalid ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
CLINICAL CANCER RESEARCH, 2019, 25 (11) :3266-3275
[39]   High-resolution Computed Tomography Features Distinguishing Benign and Malignant Lesions Manifesting as Persistent Solitary Subsolid Nodules [J].
Yang, Wenjia ;
Sun, Yifeng ;
Fang, Wentao ;
Qian, Fangfei ;
Ye, Jianding ;
Chen, Qunhui ;
Jiang, Yifeng ;
Yu, Keke ;
Han, Baohui .
CLINICAL LUNG CANCER, 2018, 19 (01) :E75-E83
[40]   A CT-Based Radiomics Nomogram Combined with Clinic-Radiological Characteristics for Preoperative Prediction of the Novel IASLC Grading of Invasive Pulmonary Adenocarcinoma [J].
Yang, Zhihe ;
Cai, Yuqin ;
Chen, Yirong ;
Ai, Zhu ;
Chen, Fang ;
Wang, Hao ;
Han, Qijia ;
Feng, Qili ;
Xiang, Zhiming .
ACADEMIC RADIOLOGY, 2023, 30 (09) :1946-1961