CT-based radiomics analysis for prediction of pathological subtypes of lung adenocarcinoma

被引:2
作者
Shao, Yinglong [1 ]
Wu, Xiaoming [2 ]
Wang, Bo [2 ]
Lei, Pengyu [1 ]
Chen, Yongchao [1 ]
Xu, Xiaomei [1 ]
Lai, Xiaobo [1 ]
Xu, Jian [1 ]
Wang, Jianqing [1 ,3 ]
机构
[1] Zhejiang Chinese Med Univ, Sch Med Technol & Informat Engn, Hangzhou 310053, Peoples R China
[2] Wenzhou Med Univ, Dept Intervent Radiol, Jinhua Peoples Hosp, Jinhua 321000, Peoples R China
[3] Zhejiang Chinese Med Univ, Zhejiang Key Lab Blood Stasis Toxin Syndrome, Hangzhou 310053, Peoples R China
关键词
Radiomics; Lung adenocarcinoma; Machine learning; Classification; Random forest; INTERNATIONAL ASSOCIATION; CANCER; CLASSIFICATION; NODULES; PROGNOSIS; FEATURES; SOCIETY;
D O I
10.1016/j.jrras.2024.101174
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: Lung cancer is a leading cause of cancer-related deaths worldwide, and its early and accurate diagnosis is crucial for improving patient survival. This paper developed an artificial intelligence (AI) model based on machine learning combined with radiomics for predicting the pathologic type of ground glass nodules (GGN). It explored its potential and challenges in practical applications. Methods: A total of 179 GGN patients with postoperative pathologically confirmed lung adenocarcinoma from June 2022 to June 2024 were collected from a hospital, including 22 cases of atypical adenomatous hyperplasia (AAH), 61 cases of adenocarcinoma in situ (AIS), 55 cases of invasive adenocarcinoma (IAC), and 41 cases of minimally invasive adenocarcinoma (MIA). Two experienced radiologists outlined the imaging data's regions of interest (ROI). Radiomic features were extracted and selected through normalization, mutual information, Spearman correlation coefficient, recursive feature elimination, and LASSO regression. Different machine learning models were developed and the best model was determined based on classification accuracy. Results: Different machine learning models were trained and tested, and a variety of deep learning models were selected for comparison, among which Random Forest had the highest accuracy of 83.3%, and the AUC value of 0.892(95%CI, 0.846-0.923) in recognizing lung adenocarcinoma types. The AUC values reached 0.92 and 0.94 respectively in diagnosing AIS and IAC. Conclusion: Radiomics combined with machine learning models, such as Random Forest, outperform average physician diagnostic accuracy in identifying lung adenocarcinoma types. The model is valuable for early and precise lung adenocarcinoma diagnosis, enhancing clinical decision-making.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm [J].
Amini, Mehdi ;
Hajianfar, Ghasem ;
Avval, Atlas Hadadi ;
Nazari, Mostafa ;
Deevband, Mohammad Reza ;
Oveisi, Mehrdad ;
Shiri, Isaac ;
Zaidi, Habib .
CLINICAL ONCOLOGY, 2022, 34 (02) :114-127
[2]   Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning [J].
Brugnara, Gianluca ;
Neuberger, Ulf ;
Mahmutoglu, Mustafa A. ;
Foltyn, Martha ;
Herweh, Christian ;
Nagel, Simon ;
Schonenberger, Silvia ;
Heiland, Sabine ;
Ulfert, Christian ;
Ringleb, Peter Arthur ;
Bendszus, Martin ;
Mohlenbruch, Markus A. ;
Pfaff, Johannes A. R. ;
Vollmuth, Philipp .
STROKE, 2020, 51 (12) :3541-3551
[3]   Comparison of lung lesion assessment using free-breathing dynamic contrast-enhanced 1.5-T MRI with a golden-angle radial stack-of-stars VIBE sequence and CT [J].
Chen, Jiliang ;
Tang, Qunfeng ;
Song, Yang ;
Tao, Xinwei ;
Chen, Jingwen ;
Zhao, Jun ;
Jiang, Zhen .
ACTA RADIOLOGICA, 2024, 65 (08) :930-939
[4]   Dual-mode ultrasound radiomics and intrinsic imaging phenotypes for diagnosis of lymph node lesions [J].
Chen, Ying ;
Jiang, Jianwei ;
Shi, Jie ;
Chang, Wanying ;
Shi, Jun ;
Chen, Man ;
Zhang, Qi .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (12)
[5]   Society of Asian Academic Surgeons Cryoablation Reduces Opioid Consumption and Length of Stay After Pulmonary Metastasectomy [J].
Chidiac, Charbel ;
Wharton, Kristin ;
Garcia, Alejandro, V ;
Rhee, Daniel S. .
JOURNAL OF SURGICAL RESEARCH, 2024, 296 :704-710
[6]  
Constantin A., 2024, Internal Medicine, V21, P111
[7]   This Week in the Journal [J].
de Koning, H. J. ;
van der Aalst, C. M. ;
de Jong, P. A. ;
Scholten, E. T. ;
Nackaerts, K. ;
Heuvelmans, M. A. ;
Lammers, J. -W. J. ;
Weenink, C. ;
Yousaf-Khan, U. ;
Horeweg, N. ;
van't Westeinde, S. ;
Prokop, M. ;
Mali, W. P. ;
Hoesein, F. A. A. Mohamed ;
van Ooijen, P. M. A. ;
Aerts, J. G. J. V. ;
den Bakker, M. A. ;
Thunnissen, E. ;
Verschakelen, J. ;
Vliegenthart, R. ;
Walter, J. E. ;
ten Haaf, K. ;
Groen, H. J. M. ;
Oudkerk, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06) :503-513
[8]   Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics [J].
Dercle, Laurent ;
Fronheiser, Matthew ;
Lu, Lin ;
Du, Shuyan ;
Hayes, Wendy ;
Leung, David K. ;
Roy, Amit ;
Wilkerson, Julia ;
Guo, Pingzhen ;
Fojo, Antonio T. ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
CLINICAL CANCER RESEARCH, 2020, 26 (09) :2151-2162
[9]   Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer: a multicenter, retrospective study [J].
Du, Yu ;
Cai, Mengjun ;
Zha, Hailing ;
Chen, Baoding ;
Gu, Jun ;
Zhang, Manqi ;
Liu, Wei ;
Liu, Xinpei ;
Liu, Xiaoan ;
Zong, Min ;
Li, Cuiying .
EUROPEAN RADIOLOGY, 2024, 34 (01) :136-148
[10]   The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up [J].
El Ayachy, Radouane ;
Giraud, Nicolas ;
Giraud, Paul ;
Durdux, Catherine ;
Giraud, Philippe ;
Burgun, Anita ;
Bibault, Jean Emmanuel .
FRONTIERS IN ONCOLOGY, 2021, 11