Achieving Ultralow Specific Contact Resistivity in Ti/n+-GaN Ohmic Contacts by Mitigating the FLP Effect with a Gallium Oxide Interlayer

被引:0
作者
Xie, Shujie [1 ,2 ]
He, Jiaheng [1 ,2 ]
Wu, Xuankun [1 ,2 ]
Cheng, Zhe [1 ,2 ]
Zhang, Lian [1 ,2 ]
Mi, Changxin [1 ,2 ]
Xie, Qiao [3 ]
Zhang, Yun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Lishui Zhongke Semicond Mat Co Ltd, Lishui 323000, Peoples R China
关键词
gallium oxide; Ti/n(+)-GaN interface; specific contact resistivity; interface passivation; Fermi-level pinning effect; GAN;
D O I
10.1021/acsaelm.4c01950
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As gallium nitride (GaN) devices are scaled for higher-frequency performance, their advancement is increasingly limited by parasitic delays due to elevated Ohmic contact resistance. To mitigate this, selective-area growth n-type doped GaN (n(+)-GaN) with titanium (Ti) as the Ohmic contact metal has been widely used, achieving specific contact resistivity in the range of 1 x 10(-7) Omega<middle dot>cm(2). However, further reductions of Ti/n(+)-GaN interfacial specific contact resistivity are constrained by the Fermi-level pinning (FLP) effect that originated from the metal-induced gap states and interfacial dangling bonding states. In this study, we propose an approach to relieve the FLP effect and achieve ultralow contact resistivity by forming an approximately 2 nm gallium oxide passivation layer at the Ti/n(+)-GaN interface through air annealing of the n(+)-GaN surface. This passivation method yields 0.24 eV Schottky barrier height and a low specific contact resistivity of 3 x 10(-8) Omega<middle dot>cm(2) for GaN Ohmic contact. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX) confirm the formation of various oxide layers under different annealing conditions. This study demonstrates an effective strategy for reducing Ohmic contact resistance, addressing parasitic resistance, and enabling further scaling of GaN devices for enhanced performance.
引用
收藏
页码:2709 / 2719
页数:11
相关论文
共 45 条
  • [1] Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts
    Agrawal, Ashish
    Lin, Joyce
    Barth, Michael
    White, Ryan
    Zheng, Bo
    Chopra, Saurabh
    Gupta, Shashank
    Wang, Ke
    Gelatos, Jerry
    Mohney, Suzanne E.
    Datta, Suman
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (11)
  • [2] AlN films on GaN: Sources of error in the photoemission measurement of electron affinity
    Bermudez, VM
    Wu, CI
    Kahn, A
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (03) : 1991 - 1991
  • [3] An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margin
    Cortese, Simone
    Khiat, Ali
    Carta, Daniela
    Light, Mark E.
    Prodromakis, Themistoklis
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (03)
  • [4] MoS2 Field-Effect Transistors With Graphene/Metal Heterocontacts
    Du, Yuchen
    Yang, Lingming
    Zhang, Jingyun
    Liu, Han
    Majumdar, Kausik
    Kirsch, Paul D.
    Ye, Peide D.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2014, 35 (05) : 599 - 601
  • [5] A survey of Gallium Nitride HEMT for RF and high power applications
    Fletcher, A. S. Augustine
    Nirmal, D.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 : 519 - 537
  • [6] Initial nucleation of metastable γ-Ga2O3 during sub-millisecond thermal anneals of amorphous Ga2O3
    Gann, Katie R.
    Chang, Celesta S.
    Chang, Ming-Chiang
    Sutherland, Duncan R.
    Connolly, Aine B.
    Muller, David A.
    van Dover, Robert B.
    Thompson, Michael O.
    [J]. APPLIED PHYSICS LETTERS, 2022, 121 (06)
  • [7] Non-Terrestrial Networks in the 6G Era: Challenges and Opportunities
    Giordani, Marco
    Zorzi, Michele
    [J]. IEEE NETWORK, 2021, 35 (02): : 244 - 251
  • [8] Grover S., 2016, THESIS ROCHESTER I T
  • [9] A review of GaN HEMT broadband power amplifiers
    Hamza, K. Husna
    Nirmal, D.
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 116
  • [10] Haynes W. M., 2017, CRC HDB CHEMISTRYAND