Addressing Bias in Feature Importance: A Hybrid Approach for Risk Prediction in Prognostic Survival Models

被引:1
|
作者
Takefuji, Yoshiyasu [1 ]
机构
[1] Musashino Univ, Fac Data Sci, Tokyo, Japan
关键词
D O I
10.1200/PO-24-00785
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [41] A feature learning approach based on XGBoost for driving assessment and risk prediction
    Shi, Xiupeng
    Wong, Yiik Diew
    Li, Michael Zhi-Feng
    Palanisamy, Chandrasekar
    Chai, Chen
    ACCIDENT ANALYSIS AND PREVENTION, 2019, 129 : 170 - 179
  • [42] Prediction of electricity tariff recovery risk based on hybrid feature selection algorithm
    Qian S.
    Shi Y.
    Wu H.
    Shang S.
    Shi, Yongsheng (15237025289@163.com), 1600, Totem Publishers Ltd (16): : 846 - 854
  • [43] A hybrid deep learning and handcrafted feature approach for the prediction of protein structural class
    Yagoubi, Rached
    Moussaoui, Abdelouahab
    Yagoubi, Mohamed Bachir
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2022, 30 (01) : 93 - 108
  • [44] Prediction Models and Feature Importance Analysis for Service State of Tunnel Sections Based on Machine Learning
    Zhao, Debo
    Yang, Yujia
    Cao, Chengyong
    Liu, Bin
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [45] Importance of metastatic volume in prognostic models to predict survival in newly diagnosed metastatic prostate cancer
    Sarah Buelens
    Elise De Bleser
    Bert Dhondt
    Wesley Verla
    Karel Decaestecker
    Piet Ost
    Valérie Fonteyne
    Kathia De Man
    Chloë Standaert
    Sylvie Rottey
    Nicolaas Lumen
    World Journal of Urology, 2019, 37 : 2565 - 2571
  • [46] Importance of metastatic volume in prognostic models to predict survival in newly diagnosed metastatic prostate cancer
    Buelens, Sarah
    De Bleser, Elise
    Dhondt, Bert
    Verla, Wesley
    Decaestecker, Karel
    Ost, Piet
    Fonteyne, Valerie
    De Man, Kathia
    Standaert, Chloe
    Rottey, Sylvie
    Lumen, Nicolaas
    WORLD JOURNAL OF UROLOGY, 2019, 37 (12) : 2565 - 2571
  • [47] Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes
    Jing Zhang
    Jing Ning
    Ruosha Li
    Statistics in Biosciences, 2023, 15 : 353 - 371
  • [48] Estimation and inference of predictive discrimination for survival outcome risk prediction models
    Ruosha Li
    Jing Ning
    Ziding Feng
    Lifetime Data Analysis, 2022, 28 : 219 - 240
  • [49] Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes
    Zhang, Jing
    Ning, Jing
    Li, Ruosha
    STATISTICS IN BIOSCIENCES, 2023, 15 (02) : 353 - 371
  • [50] Risk prediction models for survival after heart transplantation: A systematic review
    Aleksova, Natasha
    Alba, Ana C.
    Molinero, Victoria M.
    Connolly, Katherine
    Orchanian-Cheff, Ani
    Badiwala, Mitesh
    Ross, Heather J.
    Posada, Juan G. Duero
    AMERICAN JOURNAL OF TRANSPLANTATION, 2020, 20 (04) : 1137 - 1151