Addressing Bias in Feature Importance: A Hybrid Approach for Risk Prediction in Prognostic Survival Models

被引:1
|
作者
Takefuji, Yoshiyasu [1 ]
机构
[1] Musashino Univ, Fac Data Sci, Tokyo, Japan
关键词
D O I
10.1200/PO-24-00785
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Feature Importance in the Context of Traditional and Just-In-Time Software Defect Prediction Models
    Haldar, Susmita
    Capretz, Luiz Fernando
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 818 - 822
  • [32] A hybrid machine learning approach for hypertension risk prediction
    Fang, Min
    Chen, Yingru
    Xue, Rui
    Wang, Huihui
    Chakraborty, Nilesh
    Su, Ting
    Dai, Yuyan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20) : 14487 - 14497
  • [33] Hybrid ML models for volatility prediction in financial risk management
    Kumar, Satish
    Rao, Amar
    Dhochak, Monika
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2025, 98
  • [34] A Hybrid Evolutionary Approach to Protein Structure Prediction with Lattice Models
    Chira, Camelia
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2300 - 2306
  • [35] Prognostic Prediction Models for Liver Metastasis and Overall Survival in Colorectal Cancer Patients
    Miyoshi, Norikatsu
    Ohue, Masayuki
    Yasui, Masayoshi
    Takahashi, Yusuke
    Fujino, Shiki
    Wada, Yuma
    Sugimura, Keijiro
    Tomokuni, Akira
    Akita, Hirofumi
    Kobayashi, Shogo
    Takahashi, Hidenori
    Omori, Takeshi
    Miyata, Hiroshi
    Yano, Masahiko
    INTERNATIONAL SURGERY, 2021, 105 (1-3) : 442 - 448
  • [36] Methodological Issues with Head and Neck Cancer Prognostic Risk Prediction Models
    Ghanati, Hamed
    Madathil, Sreenath
    Al-Tamimi, Mohammad
    Al Asmar, Ziad
    Morris, Martin
    Nicolau, Belinda
    COMMUNITY DENTAL HEALTH, 2023, 40 (04) : 252 - 260
  • [37] Prognostic Models With Competing Risks Methods and Application to Coronary Risk Prediction
    Wolbers, Marcel
    Koller, Michael T.
    Witteman, Jacqueline C. M.
    Steyerberg, Ewout W.
    EPIDEMIOLOGY, 2009, 20 (04) : 555 - 561
  • [38] Survival risk prediction model for ESCC based on relief feature selection and CNN
    Wang, Yanfeng
    Zhu, Chuanqian
    Wang, Yan
    Sun, Junwei
    Ling, Dan
    Wang, Lidong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [39] Enhancing interpretability of tree-based models for downstream salinity prediction: Decomposing feature importance using the Shapley additive explanation approach
    Zhao, Guang-yao
    Ohsu, Kenji
    Saputra, Henry Kasmanhadi
    Okada, Teruhisa
    Suzuki, Jumpei
    Kuwahara, Yuji
    Fujita, Masafumi
    RESULTS IN ENGINEERING, 2024, 23
  • [40] Risk of bias of prognostic models developed using machine learning: a systematic review in oncology
    Dhiman, Paula
    Ma, Jie
    Navarro, Constanza L. Andaur
    Speich, Benjamin
    Bullock, Garrett
    Damen, Johanna A. A.
    Hooft, Lotty
    Kirtley, Shona
    Riley, Richard D.
    Van Calster, Ben
    Moons, Karel G. M.
    Collins, Gary S.
    DIAGNOSTIC AND PROGNOSTIC RESEARCH, 2022, 6 (01)