Unlocking therapeutic frontiers: harnessing artificial intelligence in drug discovery for neurodegenerative diseases

被引:0
作者
Nehmeh, Bilal [1 ]
Rebehmed, Joseph [2 ]
Nehmeh, Riham [3 ]
Taleb, Robin [4 ]
Akoury, Elias [1 ]
机构
[1] Lebanese Amer Univ, Dept Phys Sci, Beirut 11022801, Lebanon
[2] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[3] INSA Rennes, Inst Elect & Telecommun Rennes IETR, UMR 6164, F-35708 Rennes, France
[4] Lebanese Amer Univ, Dept Phys Sci, Byblos Campus,4M8F 6QF, Blat, Lebanon
关键词
neurodegenerative diseases; artificial intelligence; drug discovery; machine learning; pathological hallmarks; INTERACTION PREDICTION; TYROSINE KINASE; NEURAL-NETWORKS; PEMBROLIZUMAB; CHEMOTHERAPY; GENERATION; INHIBITOR; MOLECULE; MODELS; ROSUVASTATIN;
D O I
10.1016/j.drudis.2024.104216
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Neurodegenerative diseases (NDs) pose serious healthcare challenges with limited therapeutic treatments and high social burdens. The integration of artificial intelligence (AI) into drug discovery has emerged as a promising approach to address these challenges. This review explores the application of AI techniques to unravel therapeutic frontiers for NDs. We examine the current landscape of AI-driven drug discovery and discuss the potentials of AI in accelerating the identification of novel therapeutic targets on ND research and drug development, optimization of drug candidates, and expediating personalized medicine approaches. Finally, we outline future directions and challenges in harnessing AI for the advancement of therapeutics in this critical area by emphasizing the importance of interdisciplinary collaboration and ethical considerations.
引用
收藏
页数:16
相关论文
共 156 条
[141]  
Wan E A, 1990, IEEE Trans Neural Netw, V1, P303, DOI 10.1109/72.80269
[142]   Future structural genomics initiatives: an interview with Helen Berman, director of the Protein Data Bank [J].
Warr, Wendy A. .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2008, 22 (10) :707-710
[143]   Reaching for high-hanging fruit in drug discovery at protein-protein interfaces [J].
Wells, James A. ;
McClendon, Christopher L. .
NATURE, 2007, 450 (7172) :1001-1009
[144]  
Werbos PJ, 2005, Lecture Notes Control Inform Sci., V38, P762
[145]  
Wiener N., 2019, CYBERNETICS CONTROL, DOI DOI 10.7551/MITPRESS/11810.001.0001
[146]   Drug-drug interactions for UDP-glucuronosyltransferase substrates:: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios [J].
Williams, JA ;
Hyland, R ;
Jones, BC ;
Smith, DA ;
Hurst, S ;
Goosen, TC ;
Peterkin, V ;
Koup, JR ;
Ball, SE .
DRUG METABOLISM AND DISPOSITION, 2004, 32 (11) :1201-1208
[147]   MoleculeNet: a benchmark for molecular machine learning [J].
Wu, Zhenqin ;
Ramsundar, Bharath ;
Feinberg, Evan N. ;
Gomes, Joseph ;
Geniesse, Caleb ;
Pappu, Aneesh S. ;
Leswing, Karl ;
Pande, Vijay .
CHEMICAL SCIENCE, 2018, 9 (02) :513-530
[148]   ADMET Evaluation in Drug Discovery. 19. Reliable Prediction of Human Cytochrome P450 Inhibition Using Artificial Intelligence Approaches [J].
Wu, Zhenxing ;
Lei, Tailong ;
Shen, Chao ;
Wang, Zhe ;
Cao, Dongsheng ;
Hou, Tingjun .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (11) :4587-4601
[149]  
Yao K, 2023, IMMUNOPHARM IMMUNOT, V45, P754, DOI [10.1080/08923973.2023.2239488, 10.1109/INFOCOMWKSHPS57453.2023.10226100]
[150]   An integration of deep learning with feature embedding for protein-protein interaction prediction [J].
Yao, Yu ;
Du, Xiuquan ;
Diao, Yanyu ;
Zhu, Huaixu .
PEERJ, 2019, 7