A Variational Approach to the Design of Multivariable Discrete-Time Supertwisting-Like Algorithms

被引:0
作者
Miranda-Villatoro, Felix A. [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, Lab Jean Kuntzmann,Ctr Inria, F-38000 Grenoble, France
关键词
Stability analysis; Emulation; Robustness; Digital computers; Thermal stability; Numerical stability; Context modeling; Asymptotic stability; Wind energy conversion; Trajectory tracking; Convex optimization; discrete-time systems; proximal-point algorithms; robustness; sliding-mode control; splitting algorithms; SLIDING-MODE CONTROL; SUPER-TWISTING CONTROL; SPLITTING ALGORITHMS; OBSERVER; SYSTEMS; ORDER;
D O I
10.1109/TAC.2024.3484308
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a family of discrete-time, supertwisting-like algorithms is presented. The algorithms are naturally vector-valued and are described in an implicit fashion, reminiscent of backward-Euler discretization schemes. The well-posedness of the closed-loop is established and the robust stability, against a family of external disturbances, is thoroughly studied. Implementation strategies, involving splitting-algorithms from convex optimization, are also discussed and compared. Finally, numerical simulations show the performance of the proposed schemes.
引用
收藏
页码:2495 / 2506
页数:12
相关论文
共 44 条
[1]   Chattering-Free Digital Sliding-Mode Control With State Observer and Disturbance Rejection [J].
Acary, Vincent ;
Brogliato, Bernard ;
Orlov, Yury V. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (05) :1087-1101
[2]  
Andritsch B., 2024, IEEE Trans. Autom. Control, V69, P5620, DOI [arXiv:2303.15273, DOI 10.1109/TAC.2024.3370494]
[3]  
[Anonymous], CLARABEL solver
[4]   Super-Twisting Sliding Mode Control for the Stabilization of a Linear Hyperbolic System [J].
Balogoun, Ismaila ;
Marx, Swann ;
Liard, Thibault ;
Plestan, Franck .
IEEE CONTROL SYSTEMS LETTERS, 2022, 7 :1-6
[5]   Multivariable continuous fixed-time second-order sliding mode control: design and convergence time estimation [J].
Basin, Michael ;
Panathula, Chandrasekhara Bharath ;
Shtessel, Yuri .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (08) :1104-1111
[6]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[7]   The Implicit Discretization of the Supertwisting Sliding-Mode Control Algorithm [J].
Brogliato, Bernard ;
Polyakov, Andrey ;
Efimov, Denis .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (08) :3707-3713
[8]  
Burachik RS, 2008, SPRINGER SER OPTIM A, V8, P1
[9]   Rigid-Body Attitude Control USING ROTATION MATRICES FOR CONTINUOUS, SINGULARITY-FREE CONTROL LAWS [J].
Chaturvedi, Nalin A. ;
Sanyal, Amit K. ;
McClamroch, N. Harris .
IEEE CONTROL SYSTEMS MAGAZINE, 2011, 31 (03) :30-51
[10]   Proximal Splitting Algorithms for Convex Optimization: A Tour of Recent Advances, with New Twists [J].
Condat, Laurent ;
Kitahara, Daichi ;
Contreras, Andres ;
Hirabayashi, Akira .
SIAM REVIEW, 2023, 65 (02) :375-435