Multicomponent Anodes Based on Amorphous ZnP2 for Fast-Charging/Discharging Lithium-Ion Batteries

被引:0
|
作者
Liu, Lingwen [1 ]
Xie, Huixian [1 ]
Zheng, Yunshan [1 ]
Hui, Kwan San [2 ]
Sun, Yuanmiao [3 ]
Cheng, Hui-Ming [3 ,4 ,5 ]
Hui, Kwun Nam [1 ]
机构
[1] Univ Macau, Inst Appl Phys & Mat Engn, Joint Key Lab, Minist Educ, Ave Univ, Taipa 999078, Macau, Peoples R China
[2] Prince Mohammad Bin Fahd Univ, Coll Engn, Dept Mech Engn, POB 1664, Al Khobar 31952, Saudi Arabia
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Technol Carbon Neutral, Shenzhen 518055, Peoples R China
[4] Shenzhen Univ Adv Technol, Fac Mat Sci & Energy Engn, Shenzhen 518055, Peoples R China
[5] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
关键词
amorphous ZnP2; phosphorus-based anodes; rapid Li+ diffusion; volume buffering; DESIGN; PERFORMANCE; PHOSPHORUS; GRAPHITE; LIFE;
D O I
10.1002/aenm.202404900
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-capacity phosphorus-based anodes have shown promise for fast-charging/discharging lithium-ion batteries, but have a low conductivity, and undergo significant volume changes during use, resulting in a poor rate performance and short cycle life. To overcome these limitations, the study has synthesized a hybrid material comprising amorphous ZnP2 incorporated with in situ formed amorphous zinc phosphate along with phosphorus and carbon (a-ZnP2/Zn-3(PO4)(2)/P/C) by a one-step high-energy ball milling process. The porous structure and isotropic nature of the hybrid amorphous material improve Li+ accessibility, reaction kinetics, and structural stability during fast lithiation/delithiation. Particularly, the hybrid amorphous ZnP2 electrode shows stable cycling performance over 2200 cycles at 5 A g(-1) (3 C), retaining 92.3% of its maximum capacity to 985 mAh g(-)(1), and demonstrating high-rate charging/discharging capability at 10/20 A g(-1) (6 C/12 C) over 2000/2700 cycles to 734/592 mAh g(-1). It is found that a reduced electrochemical polarization, large pseudocapacitive contribution, improved Li+ diffusion kinetics and more stable electrode-electrolyte interface of the hybrid electrode contribute to its outstanding performance. This groundbreaking work paves a way for high-performance multicomponent phosphorus-based anodes for fast-charging/discharging LIBs.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Layered-Oxide Cathode Materials for Fast-Charging Lithium-Ion Batteries: A Review
    Meng, Xin
    Wang, Jiale
    Li, Le
    MOLECULES, 2023, 28 (10):
  • [22] Ordered-Range Tuning of Flash Graphene for Fast-Charging Lithium-Ion Batteries
    Yang, Hongyan
    Sun, Lanju
    Zhai, Shengliang
    Wang, Xiao
    Liu, Chengcheng
    Wu, Hao
    Deng, Weiqiao
    ACS APPLIED NANO MATERIALS, 2023, 6 (04) : 2450 - 2458
  • [23] Recent advances in fast-charging lithium-ion batteries: Mechanism, materials, and future opportunities
    Xiao, Huang
    Zhao, Jingteng
    Gao, Qixin
    Zhang, Wenjing
    Cheng, Xin
    Song, Congying
    Li, Guoxing
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [24] FeNb11O29 and related niobate anodes for fast-charging lithium-ion batteries: a review
    Bini, Marcella
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024,
  • [25] Optimization of fast-charging strategy for LISHEN 4695 cylindrical lithium-ion batteries
    Hong, Shu
    Ma, Dongwei
    Zeng, Weijia
    Shi, Jintao
    Liu, Yingbo
    Yang, Liping
    Fan, Yaqi
    Liu, Yulu
    Yang, Chenglin
    Hong, Bo
    JOURNAL OF POWER SOURCES, 2025, 629
  • [26] Cell Architecture Design for Fast-Charging Lithium-Ion Batteries in Electric Vehicles
    Yeganehdoust, Firoozeh
    Reddy, Anil Kumar Madikere Raghunatha
    Zaghib, Karim
    BATTERIES-BASEL, 2025, 11 (01):
  • [27] Phosphorus-based anodes for fast-charging alkali metal ion batteries
    Lan, Xuexia
    Li, Zhen
    Zeng, Yi
    Han, Cuiping
    Peng, Jing
    Cheng, Hui-Ming
    ECOMAT, 2024, 6 (05)
  • [28] Stable fast-charging electrodes derived from hierarchical porous carbon for lithium-ion batteries
    Hwang, Sang Youp
    Lee, Hae Ri
    Lee, Yoon Ki
    Lee, Gi Bbuem
    Lee, Sungho
    Kim, Hyoung Juhn
    Joh, Han-Ik
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (03) : 4718 - 4726
  • [29] Unlocking fast-charging capabilities of lithium-ion batteries through liquid electrolyte engineering
    Song, Chaeeun
    Han, Seung Hee
    Moon, Hyeongyu
    Choi, Nam-Soon
    ECOMAT, 2024, 6 (07)
  • [30] Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries
    Kim, Jisu
    Jeghan, Shrine Maria Nithya
    Lee, Gibaek
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 305 (305)