Revolutionising osseous biopsy: the impact of artificial intelligence in the era of personalized medicine

被引:0
作者
Isaac, Amanda [1 ]
Klontzas, Michail E. [2 ]
Dalili, Danoob [3 ]
Akdogan, Asli Irmak [4 ]
Fawzi, Mohamed [5 ]
Gugliemi, Giuseppe [6 ]
Filippiadis, Dimitrios [7 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, 100 Lambeth Palace Rd, London SE1 7AR, England
[2] Univ Crete, Sch Med, Dept Radiol, Iraklion 71003, Greece
[3] Epsom & St Helier Hosp, Southwest London Elective Orthopaed Ctr, London SM5 1AA, England
[4] Izmir Katip Celebi Univ, Ataturk Training & Res Hosp, Izmir, Turkiye
[5] Natl Hepatol & Trop Res Inst, Dept Radiol, Cairo, Egypt
[6] Univ Foggia, Foggia, Italy
[7] Natl & Kapodistrian Univ Athens, Univ Gen Hosp ATTIKON, Med Sch, Dept Radiol 2, Athens 12462, Greece
关键词
artificial intelligence; osseous biopsy; personalized medicine; bone diagnostics; machine learning; precision healthcare; BONE; TELEPATHOLOGY; MODEL;
D O I
10.1093/bjr/tqaf018
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalized medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted. We provide a brief review of AI in image- guided biopsy of bone tumours (primary and secondary) and specimen handling, in the era of personalized medicine. This article explores AI's role in enhancing diagnostic accuracy, improving safety in biopsies, and enabling more precise targeting in bone lesion biopsies, ultimately contributing to better patient outcomes in personalized medicine. We dive into various AI technologies applied to osseous biopsies, such as traditional machine learning, deep learning, radiomics, simulation, and generative models. We explore their roles in tumour-board meetings, communication between clinicians, radiologists, and pathologists. Additionally, we inspect ethical considerations associated with the integration of AI in bone biopsy procedures, technical limitations, and we delve into health equity, generalizability, deployment issues, and reimbursement challenges in AI-powered healthcare. Finally, we explore potential future developments and offer a list of open-source AI tools and algorithms relevant to bone biopsies, which we include to encourage further discussion and research.
引用
收藏
页数:15
相关论文
共 61 条
  • [11] Ultrasound-Guided Biopsies of Bone Lesions Without Cortical Disruption Using Fusion Imaging and Needle Tracking: Proof of Concept
    Garnon, Julien
    Koch, Guillaume
    Tsoumakidou, Georgia
    Caudrelier, Jean
    Chari, Basavaraj
    Cazzato, Roberto Luigi
    Gangi, Afshin
    [J]. CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2017, 40 (08) : 1267 - 1273
  • [12] CT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomas
    Gitto, Salvatore
    Cuocolo, Renato
    Annovazzi, Alessio
    Anelli, Vincenzo
    Acquasanta, Marzia
    Cincotta, Antonino
    Albano, Domenico
    Chianca, Vito
    Ferraresi, Virginia
    Messina, Carmelo
    Zoccali, Carmine
    Armiraglio, Elisabetta
    Parafioriti, Antonina
    Sciuto, Rosa
    Luzzati, Alessandro
    Biagini, Roberto
    Imbriaco, Massimo
    Sconfienza, Luca Maria
    [J]. EBIOMEDICINE, 2021, 68
  • [13] A new robotic assistance system for percutaneous CT-guided punctures: Initial experience
    Groetz, Simon
    Wilhelm, Kai
    Willinek, Winfried
    Pieper, Claus
    Schild, Hans
    Thomas, Daniel
    [J]. MINIMALLY INVASIVE THERAPY & ALLIED TECHNOLOGIES, 2016, 25 (02) : 79 - 85
  • [14] A Scoring System for Predicting Neoadjuvant Chemotherapy Response in Primary High-Grade Bone Sarcomas: A Multicenter Study
    He, Fangzhou
    Xie, Lu
    Sun, Xin
    Xu, Jie
    Li, Yuan
    Liu, Rong
    Sun, Kunkun
    Shen, Danhua
    Gu, Jin
    Ji, Tao
    Guo, Wei
    [J]. ORTHOPAEDIC SURGERY, 2022, 14 (10) : 2499 - 2509
  • [15] Hitchcock CL, 2011, ARCH PATHOL LAB MED, V135, P211, DOI 10.1043/1543-2165-135.2.211
  • [16] Deep Learning-Based Objective and Reproducible Osteosarcoma Chemotherapy Response Assessment and Outcome Prediction
    Ho, David J.
    Agaram, Narasimhan P.
    Suser, Stephanie D.
    Chu, Cynthia
    Vanderbilt, Chad M.
    Meyers, Paul A.
    Wexler, Leonard H.
    Healey, John H.
    Fuchs, Thomas J.
    Hameed, Meera R.
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2023, 193 (03) : 341 - 349
  • [17] HistoNet: A Deep Learning-Based Model of Normal Histology
    Hoefling, Holger
    Sing, Tobias
    Hossainl, Imtiaz
    Boisclair, Julie
    Doelemeyer, Arno
    Flandre, Thierry
    Piaia, Alessandro
    Romanet, Vincent
    Santarossa, Gianluca
    Saravanan, Chandrassegar
    Sutter, Esther
    Turner, Oliver
    Wuersch, Kuno
    Moulin, Pierre
    [J]. TOXICOLOGIC PATHOLOGY, 2021, 49 (04) : 784 - 797
  • [18] Development and Validation of a Radiomics Model for Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT
    Hong, Ji Hyun
    Jung, Joon-Yong
    Jo, Aram
    Nam, Yoonho
    Pak, Seongyong
    Lee, So-Yeon
    Park, Hyerim
    Lee, Seung Eun
    Kim, Sanghee
    [J]. RADIOLOGY, 2021, 299 (03) : 626 - 632
  • [19] Detection of Bone Metastases on Bone Scans through Image Classification with Contrastive Learning
    Hsieh, Te-Chun
    Liao, Chiung-Wei
    Lai, Yung-Chi
    Law, Kin-Man
    Chan, Pak-Ki
    Kao, Chia-Hung
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (12):
  • [20] Preliminary discrimination and evaluation of clinical application value of ChatGPT4o in bone tumors
    Huang, Leiyun
    Hu, Jinghan
    Cai, Qingjin
    Ye, Aoran
    Chen, Yanxiong
    Xiao Zhi, Zha Yang
    Liu, Yongzhen
    Zheng, Ji
    Meng, Zengdong
    [J]. JOURNAL OF BONE ONCOLOGY, 2024, 48