Sepsis Mortality Prediction with Electronic Health Records Based on Sequential and Attention-Based Models

被引:0
作者
Liu, Xianbo [1 ]
Wang, Kaiyuan [2 ]
Wang, Weifan [3 ]
Luo, Yi [1 ]
Ren, Peng [4 ]
Hu, Yuhang [1 ]
Li, Zeming [1 ]
Li, Xiangkuan [5 ]
Hu, Zhentao [3 ]
Li, Wenyao [6 ]
Xing, Chunxiao [4 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Cent Univ Finance & Econ, Sch Accountancy, Beijing 100081, Peoples R China
[3] Henan Univ, Sch Artificial Intelligence, Zhengzhou 450046, Peoples R China
[4] Tsinghua Univ, RIIT, BNRist, DCST, Beijing 100084, Peoples R China
[5] Beijing Natl Day Sch, Beijing 100049, Peoples R China
[6] Henan Univ, Sch Software, Kaifeng 475004, Peoples R China
来源
WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024 | 2024年 / 14883卷
基金
中国国家自然科学基金;
关键词
Sepsis; Mortality prediction; Electronic health records; Attention-based;
D O I
10.1007/978-981-97-7707-5_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sepsis is a leading cause of death in the ICU. The mortality prediction driven by medical data is vitally important for sepsis prevention and treatment. However, the task of risk prediction is particularly challenging due to the complexity and heterogeneity of medical data. The past models tend to focus only on sequential models or time embedding. In this paper, we propose a novel model architecture DiagNet, which utilizes sequential and global analysis of patient information to improve the prediction accuracy. For DiagNet, we design a comparison experiment with four existing models Retain, Dipole, RetainEX and HiTANet, and the ablation study with the next-best variant on the MIMIC-IV and eICU datasets. Evaluations showcase that DiagNet outperforms other four models, especially on the MIMIC-IV dataset, achieving both a superior F1-Score and AUC score. Comparing with the next-best variant of the architecture, DiagNet performs better on the most crucial metric, AUC on both datasets. This research contributes to the field by providing an enhanced model architecture for healthcare risk prediction, offering the potential for improved patient care and outcomes.
引用
收藏
页码:476 / 486
页数:11
相关论文
共 50 条
[41]   Combining Attention-based Models with the MeSH Ontology for Semantic Textual Similarity in Clinical Notes [J].
Faramarzi, Noushin Salek ;
Dara, Akanksha ;
Banerjee, Ritwik .
2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, :74-83
[42]   Search Activities for Innovation: An Attention-Based View [J].
Tseng, Chuan-Chuan ;
Fang, Shih-Chieh ;
Chiu, Yen-Ting Helena .
INTERNATIONAL JOURNAL OF BUSINESS, 2011, 16 (01) :51-70
[43]   Real-time prediction of COVID-19 related mortality using electronic health records [J].
Schwab, Patrick ;
Mehrjou, Arash ;
Parbhoo, Sonali ;
Celi, Leo Anthony ;
Hetzel, Jurgen ;
Hofer, Markus ;
Scholkopf, Bernhard ;
Bauer, Stefan .
NATURE COMMUNICATIONS, 2021, 12 (01)
[44]   A deep attention-based encoder for the prediction of type 2 diabetes longitudinal outcomes from routinely collected health care data [J].
Manzini, Enrico ;
Vlacho, Bogdan ;
Franch-Nadal, Josep ;
Escudero, Joan ;
Genova, Ana ;
Reixach, Elisenda ;
Andres, Erich ;
Pizarro, Israel ;
Mauricio, Didac ;
Perera-Lluna, Alexandre .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 274
[45]   Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth [J].
Abraham, Abin ;
Le, Brian ;
Kosti, Idit ;
Straub, Peter ;
Velez-Edwards, Digna R. ;
Davis, Lea K. ;
Newton, J. M. ;
Muglia, Louis J. ;
Rokas, Antonis ;
Bejan, Cosmin A. ;
Sirota, Marina ;
Capra, John A. .
BMC MEDICINE, 2022, 20 (01)
[46]   FedEHR: A Federated Learning Approach towards the Prediction of Heart Diseases in IoT-Based Electronic Health Records [J].
Bebortta, Sujit ;
Tripathy, Subhranshu Sekhar ;
Basheer, Shakila ;
Chowdhary, Chiranji Lal .
DIAGNOSTICS, 2023, 13 (20)
[47]   Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth [J].
Abin Abraham ;
Brian Le ;
Idit Kosti ;
Peter Straub ;
Digna R. Velez-Edwards ;
Lea K. Davis ;
J. M. Newton ;
Louis J. Muglia ;
Antonis Rokas ;
Cosmin A. Bejan ;
Marina Sirota ;
John A. Capra .
BMC Medicine, 20
[48]   Flexible, cluster-based analysis of the electronic medical record of sepsis with composite mixture models [J].
Mayhew, Michael B. ;
Petersen, Brenden K. ;
Sales, Ana Paula ;
Greene, John D. ;
Liu, Vincent X. ;
Wasson, Todd S. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 78 :33-42
[49]   Evaluation of Electronic Health Record-Based Suicide Risk Prediction Models on Contemporary Data [J].
Walker, Rod L. ;
Shortreed, Susan M. ;
Ziebell, Rebecca A. ;
Johnson, Eric ;
Boggs, Jennifer M. ;
Lynch, Frances L. ;
Daida, Yihe G. ;
Ahmedani, Brian K. ;
Rossom, Rebecca ;
Coleman, Karen J. ;
Simon, Gregory E. .
APPLIED CLINICAL INFORMATICS, 2021, 12 (04) :778-787
[50]   Representation learning for clinical time series prediction tasks in electronic health records [J].
Ruan, Tong ;
Lei, Liqi ;
Zhou, Yangming ;
Zhai, Jie ;
Zhang, Le ;
He, Ping ;
Gao, Ju .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (Suppl 8)