Toward Low-Resource Languages Machine Translation: A Language-Specific Fine-Tuning With LoRA for Specialized Large Language Models

被引:0
|
作者
Liang, Xiao [1 ,2 ]
Khaw, Yen-Min Jasmina [1 ]
Liew, Soung-Yue [3 ]
Tan, Tien-Ping [4 ]
Qin, Donghong [2 ]
机构
[1] Univ Tunku Abdul Rahman, Fac Informat & Commun Technol, Dept Comp Sci, Kampar 31900, Malaysia
[2] Guangxi Minzu Univ, Sch Artificial Intelligence, Nanning 530008, Peoples R China
[3] Univ Tunku Abdul Rahman, Fac Informat & Commun Technol, Dept Comp & Commun Technol, Kampar 31900, Malaysia
[4] Univ Sains Malaysia, Sch Comp Sci, George Town 11700, Malaysia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Machine translation; low-resource languages; large language models; parameter-efficient fine-tuning; LoRA;
D O I
10.1109/ACCESS.2025.3549795
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of computational linguistics, addressing machine translation (MT) challenges for low-resource languages remains crucial, as these languages often lack extensive data compared to high-resource languages. General large language models (LLMs), such as GPT-4 and Llama, primarily trained on monolingual corpora, face significant challenges in translating low-resource languages, often resulting in subpar translation quality. This study introduces Language-Specific Fine-Tuning with Low-rank adaptation (LSFTL), a method that enhances translation for low-resource languages by optimizing the multi-head attention and feed-forward networks of Transformer layers through low-rank matrix adaptation. LSFTL preserves the majority of the model parameters while selectively fine-tuning key components, thereby maintaining stability and enhancing translation quality. Experiments on non-English centered low-resource Asian languages demonstrated that LSFTL improved COMET scores by 1-3 points compared to specialized multilingual machine translation models. Additionally, LSFTL's parameter-efficient approach allows smaller models to achieve performance comparable to their larger counterparts, highlighting its significance in making machine translation systems more accessible and effective for low-resource languages.
引用
收藏
页码:46616 / 46626
页数:11
相关论文
共 50 条
  • [1] adaptMLLM: Fine-Tuning Multilingual Language Models on Low-Resource Languages with Integrated LLM Playgrounds
    Lankford, Seamus
    Afli, Haithem
    Way, Andy
    INFORMATION, 2023, 14 (12)
  • [2] Efficient Fine-Tuning for Low-Resource Tibetan Pre-trained Language Models
    Zhou, Mingjun
    Daiqing, Zhuoma
    Qun, Nuo
    Nyima, Tashi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VII, 2024, 15022 : 410 - 422
  • [3] Improving Machine Translation Capabilities by Fine-Tuning Large Language Models and Prompt Engineering with Domain-Specific Data
    Laki, Laszlo Janos
    Yang, Zijian Gyozo
    2024 IEEE 3RD CONFERENCE ON INFORMATION TECHNOLOGY AND DATA SCIENCE, CITDS 2024, 2024, : 129 - 133
  • [4] Repeatability of Fine-Tuning Large Language Models Illustrated Using QLoRA
    Alahmari, Saeed S.
    Hall, Lawrence O.
    Mouton, Peter R.
    Goldgof, Dmitry B.
    IEEE ACCESS, 2024, 12 : 153221 - 153231
  • [5] Getting it right: the limits of fine-tuning large language models
    Browning, Jacob
    ETHICS AND INFORMATION TECHNOLOGY, 2024, 26 (02)
  • [6] Enhancing Chinese comprehension and reasoning for large language models: an efficient LoRA fine-tuning and tree of thoughts framework
    Chen, Songlin
    Wang, Weicheng
    Chen, Xiaoliang
    Zhang, Maolin
    Lu, Peng
    Li, Xianyong
    Du, Yajun
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [7] Fine-Tuning Large Language Models for Private Document Retrieval: A Tutorial
    Sommers, Frank
    Kongthon, Alisa
    Kongyoung, Sarawoot
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 1319 - 1320
  • [8] The Task of Post-Editing Machine Translation for the Low-Resource Language
    Rakhimova, Diana
    Karibayeva, Aidana
    Turarbek, Assem
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [9] A Comparative Analysis of Instruction Fine-Tuning Large Language Models for Financial Text Classification
    Fatemi, Sorouralsadat
    Hu, Yuheng
    Mousavi, Maryam
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2025, 16 (01)
  • [10] Characterizing Communication in Distributed Parameter-Efficient Fine-Tuning for Large Language Models
    Alnaasan, Nawras
    Huang, Horng-Ruey
    Shafi, Aamir
    Subramoni, Hari
    Panda, Dhabaleswar K.
    2024 IEEE SYMPOSIUM ON HIGH-PERFORMANCE INTERCONNECTS, HOTI 2024, 2024, : 11 - 19