Bridging the Gap: Deep Learning EEG-Based Applications for Schizophrenia Classification and Management

被引:0
作者
Paraschiv, Elena-Anca [1 ,2 ]
Ianculescu, Marilena [1 ]
Alexandru, Adriana [1 ]
机构
[1] Natl Inst Res & Dev Informat, Commun Digital Applicat & Syst Dept, Bucharest, Romania
[2] Univ Politehn Bucuresti, Doctoral Sch Elect Telecommun & Informat Technol, Bucharest, Romania
来源
ADVANCES IN DIGITAL HEALTH AND MEDICAL BIOENGINEERING, VOL 1, EHB-2023 | 2024年 / 109卷
关键词
Deep Learning; Schizophrenia; EEG; Remote Health Monitoring;
D O I
10.1007/978-3-031-62502-2_76
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Schizophrenia, a multifaceted and debilitating mental disorder, demands early and accurate diagnosis to enhance treatment outcomes. This paper presents a comprehensive study exploring the potential of deep learning (DL) models for automating schizophrenia diagnosis using electroencephalography (EEG) data. The research encompasses EEG signal acquisition, preprocessing involving normalization and filtering, and the deployment of cutting-edge DL techniques, including 1D-Convolutional Neural Networks (1D-CNN), Long ShortTerm Memory (LSTM) networks, and their fusion in a CNN-LSTM architecture. The paper also presents the benefits and implications of the personalized management of schizophrenia based on remote health monitoring which may improve treatment effectiveness and the overall well-being of patients.
引用
收藏
页码:676 / 684
页数:9
相关论文
共 11 条
  • [11] E-Prevention: Advanced Support System for Monitoring and Relapse Prevention in Patients with Psychotic Disorders Analyzing Long-Term Multimodal Data from Wearables and Video Captures
    Zlatintsi, Athanasia
    Filntisis, Panagiotis P.
    Garoufis, Christos
    Efthymiou, Niki
    Maragos, Petros
    Menychtas, Andreas
    Maglogiannis, Ilias
    Tsanakas, Panayiotis
    Sounapoglou, Thomas
    Kalisperakis, Emmanouil
    Karantinos, Thomas
    Lazaridi, Marina
    Garyfalli, Vasiliki
    Mantas, Asimakis
    Mantonakis, Leonidas
    Smyrnis, Nikolaos
    [J]. SENSORS, 2022, 22 (19)