Assessments of lung nodules by an artificial intelligence chatbot using longitudinal CT images

被引:0
作者
Mao, Yuqiang [1 ]
Xu, Nan [2 ]
Wu, Yanan [2 ]
Wang, Lu [2 ,3 ]
Wang, Hongtao [4 ]
He, Qianqian [2 ]
Zhao, Tianqi [5 ]
Ma, Shuangchun [5 ]
Zhou, Meihong [5 ]
Jin, Hongjie [1 ]
Pei, Dongmei [6 ]
Zhang, Lina [5 ]
Song, Jiangdian [2 ]
机构
[1] China Med Univ, Dept Thorac Surg, Shengjing Hosp, Shenyang 110004, Liaoning, Peoples R China
[2] China Med Univ, Sch Hlth Management, Shenyang 110122, Liaoning, Peoples R China
[3] China Med Univ, Shengjing Hosp, Shenyang 110004, Liaoning, Peoples R China
[4] China Med Univ, Dept Hematol, Shengjing Hosp, Shenyang 110004, Liaoning, Peoples R China
[5] China Med Univ, Affiliated Hosp 4, Dept Radiol, Shenyang 110032, Liaoning, Peoples R China
[6] China Med Univ, Shengjing Hosp, Dept Hlth Management, Shenyang 110004, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Highlights; PULMONARY NODULES; GUIDELINES;
D O I
10.1016/j.xcrm.2025.101988
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Large language models have shown efficacy across multiple medical tasks. However, their value in the assessment of longitudinal follow-up computed tomography (CT) images of patients with lung nodules is unclear. In this study, we evaluate the ability of the latest generative pre-trained transformer (GPT)-4o model to assess changes in malignancy probability, size, and features of lung nodules on longitudinal CT scans from 647 patients (547 from two local centers and 100 from a public dataset). GPT-4o achieves an average accuracy of 0.88 in predicting lung nodule malignancy compared to pathological results and an average intraclass correlation coefficient of 0.91 in measuring nodule size compared with manual measurements by radiologists. Six radiologists' evaluations demonstrate GPT-4o's ability to capture changes in nodule features with a median Likert score of 4.17 (out of 5.00). In summary, GPT-4o could capture dynamic changes in lung nodules across longitudinal follow-up CT images, thus providing high-quality radiological evidence to assist in clinical management.
引用
收藏
页数:14
相关论文
共 47 条
  • [1] Lung cancer screening
    Adams, Scott J.
    Stone, Emily
    Baldwin, David R.
    Vliegenthart, Rozemarijn
    Lee, Pyng
    Fintelmann, Florian J.
    [J]. LANCET, 2023, 401 (10374) : 390 - 408
  • [2] End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
    Ardila, Diego
    Kiraly, Atilla P.
    Bharadwaj, Sujeeth
    Choi, Bokyung
    Reicher, Joshua J.
    Peng, Lily
    Tse, Daniel
    Etemadi, Mozziyar
    Ye, Wenxing
    Corrado, Greg
    Naidich, David P.
    Shetty, Shravya
    [J]. NATURE MEDICINE, 2019, 25 (06) : 954 - +
  • [3] Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society
    Bankier, Alexander A.
    MacMahon, Heber
    Goo, Jin Mo
    Rubin, Geoffrey D.
    Schaefer-Prokop, Cornelia M.
    Naidich, David P.
    [J]. RADIOLOGY, 2017, 285 (02) : 584 - 600
  • [4] False-Negative Results in Lung Cancer Screening- Evidence and Controversies
    Bartlett, Emily C.
    Silva, Mario
    Callister, Matthew E.
    Devaraj, Anand
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (06) : 912 - 921
  • [5] Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters
    Berenguer, Roberto
    del Rosario Pastor-Juan, Maria
    Canales-Vazquez, Jesus
    Castro-Garcia, Miguel
    Villas, Maria Victoria
    Mansilla Legorburo, Francisco
    Sabater, Sebastia
    [J]. RADIOLOGY, 2018, 288 (02) : 407 - 415
  • [6] Updated Fleischner Society Guidelines for Managing Incidental Pulmonary Nodules: Common Questions and Challenging Scenarios
    Bueno, Juliana
    Landeras, Luis
    Chung, Jonathan H.
    [J]. RADIOGRAPHICS, 2018, 38 (05) : 1337 - +
  • [7] A Two-Stage Convolutional Neural Networks for Lung Nodule Detection
    Cao, Haichao
    Liu, Hong
    Song, Enmin
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Liu, Tengying
    Hung, Chih-Cheng
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) : 2006 - 2015
  • [8] Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT
    Chen, Yong
    Zhong, Jingyu
    Wang, Lan
    Shi, Xiaomeng
    Lu, Wei
    Li, Jianying
    Feng, Jianxing
    Xia, Yihan
    Chang, Rui
    Fan, Jing
    Chen, Liwei
    Zhu, Ying
    Yan, Fuhua
    Yao, Weiwu
    Zhang, Huan
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (08) : 5480 - 5490
  • [9] Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    Coudray, Nicolas
    Ocampo, Paolo Santiago
    Sakellaropoulos, Theodore
    Narula, Navneet
    Snuderl, Matija
    Fenyo, David
    Moreira, Andre L.
    Razavian, Narges
    Tsirigos, Aristotelis
    [J]. NATURE MEDICINE, 2018, 24 (10) : 1559 - +
  • [10] Low-Dose CT-derived Bronchial Parameters in Individuals with Healthy Lungs
    Dudurych, Ivan
    Pelgrim, Gert-Jan
    Sidorenkov, Grigory
    Garcia-Uceda, Antonio
    Petersen, Jens
    Slebos, Dirk-Jan
    de Bock, Geertruida H.
    van den Berge, Maarten
    de Bruijne, Marleen
    Vliegenthart, Rozemarijn
    [J]. RADIOLOGY, 2024, 311 (03)