Summing the "exactly one 42" and similar subsums of the harmonic series

被引:1
作者
Burnol, Jean-Francois [1 ]
机构
[1] Univ Lille, Fac Sci & technol, Dept Math, F-59655 Villeneuve Dascq, France
关键词
Kempner series; Irwin series; Schmelzer-Baillie series;
D O I
10.1016/j.aam.2024.102791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For b > 1 and alpha beta a string of two digits in base b, let K-1 be the subsum of the harmonic series with only those integers having exactly one occurrence of alpha beta. We obtain a theoretical representation of such K-1 series which, say for b = 10, allows computing them all to thousands of digits. This is based on certain specific measures on the unit interval and the use of their Stieltjes transforms at negative integers. Integral identities of a combinatorial nature both explain the relation to the K-1 sums and lead to recurrence formulas for the measure moments allowing in the end the straightforward numerical implementation. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:29
相关论文
共 11 条
[1]   Ellipsephic harmonic series revisited [J].
Allouche, J. -p. ;
Hu, Y. ;
Morin, C. .
ACTA MATHEMATICA HUNGARICA, 2024, 173 (02) :461-470
[2]   SUMS OF RECIPROCALS OF INTEGERS MISSING A GIVEN DIGIT [J].
BAILLIE, R .
AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (05) :372-374
[3]  
Baillie R, 2024, Arxiv, DOI arXiv:0806.4410
[4]  
Borwein J.M., 1987, Canadian Mathematical Society Series of Monographs and Advanced Texts, P414
[5]  
Burnol JF, 2025, Arxiv, DOI arXiv:2405.03625
[6]  
Burnol JF, 2024, Arxiv, DOI arXiv:2402.08525
[7]  
Burnol JF, 2024, Arxiv, DOI arXiv:2402.09083
[8]  
Clausen T., 1828, J. Reine Angew. Math., V3, P92, DOI DOI 10.1515/CRLL.1828.3.92
[9]  
FARHI B., 2008, AM MATH MON, V115, P933, DOI DOI 10.1080/00029890.2008.11920611
[10]  
IRWIN F., 1916, AM MATH MON, V23, P149, DOI [DOI 10.2307/2974352, 10.2307/2974352]