Social recommendation based on contrastive learning of hypergraph convolution

被引:0
作者
Xue, Peng [1 ,2 ,3 ]
Gao, Qian [1 ,2 ,3 ]
Fan, Jun [4 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr,Minist Educ, Natl Supercomp Ctr Jinan,Key Lab Comp Power Networ, Jinan 250014, Shandong, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Fac Comp Sci & Technol, Shandong Engn Res Ctr Big Data Appl Technol, Jinan 250353, Shandong, Peoples R China
[3] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Ind Network & Informat Syst, Jinan 250014, Shandong, Peoples R China
[4] China Telecom Digital Intelligence Technol Co Ltd, 1999 Shunhua Rd, Jinan 250101, Shandong, Peoples R China
关键词
Contrastive learning; Social recommendation; Hypergraph convolution; Neighbor interaction;
D O I
10.1007/s11227-025-07143-8
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recommendation systems often use social relationships to improve recommendation quality in the face of sparse data. However, in reality, user interactions can be very complex, user relationships may be high-order, and the contribution of each neighbor may be different. Therefore, traditional social relationship methods cannot fully explore user interactions. Additionally, data sparsity can lead to poor model robustness, making it susceptible to noisy data. To address these issues, this paper proposes a multi-channel hypergraph convolutional network model based on contrastive learning, aiming to enhance social recommendation through high-order user relationships and contrastive learning. The model includes an embedding layer, a propagation layer, and a contrastive learning layer. For user embedding, each channel of the propagation layer learns high-order embedding information through hypergraph convolution. For item embedding, the neighbor-aware attention coefficient is used to mine the implicit correlations of items. In addition, the contrastive learning layer adds randomly uniform noise to the embedding to perform graph augmentation at the representation level, using contrastive learning to obtain more uniformly distributed embedding representations for score prediction. Experimental results on two real datasets, Douban and Yelp, show that the proposed model improves Predict, Recall and NDCG by 1.42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}2.11%, 1.30-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}2.30% and 1.89-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}2.74%, respectively.
引用
收藏
页数:27
相关论文
共 39 条
[1]  
Bai S, 2020, Arxiv, DOI arXiv:1901.08150
[2]  
Chuang C.-Y., 2020, P ADV NEUR INF PROC, V33, P8765, DOI DOI 10.48550/ARXIV.2007.00224
[3]   Graph Neural Networks for Social Recommendation [J].
Fan, Wenqi ;
Ma, Yao ;
Li, Qing ;
He, Yuan ;
Zhao, Eric ;
Tang, Jiliang ;
Yin, Dawei .
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, :417-426
[4]  
Feng YF, 2019, AAAI CONF ARTIF INTE, P3558
[5]   DH-HGCN: Dual Homogeneity Hypergraph Convolutional Network for Multiple Social Recommendations [J].
Han, Jiadi ;
Tao, Qian ;
Tang, Yufei ;
Xia, Yuhan .
PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, :2190-2194
[6]   Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation [J].
Hao, Bowen ;
Zhang, Jing ;
Yin, Hongzhi ;
Li, Cuiping ;
Chen, Hong .
WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, :265-273
[7]   LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation [J].
He, Xiangnan ;
Deng, Kuan ;
Wang, Xiang ;
Li, Yan ;
Zhang, Yongdong ;
Wang, Meng .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :639-648
[8]  
Goodfellow IJ, 2015, Arxiv, DOI arXiv:1412.6572
[9]  
Jamali M., 2010, P 4 ACM C RECOMMENDE, P135, DOI [10.1145/1864708.1864736, DOI 10.1145/1864708.1864736]
[10]   Dual Channel Hypergraph Collaborative Filtering [J].
Ji, Shuyi ;
Feng, Yifan ;
Ji, Rongrong ;
Zhao, Xibin ;
Tang, Wanwan ;
Gao, Yue .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :2020-2029