Decoding the Clavien-Dindo Classification: Artificial Intelligence (AI) as a Novel Tool to Grade Postoperative Complications

被引:0
作者
Staubli, Sebastian Manuel [1 ]
Walker, Harriet Louise [2 ]
Saner, Fuat [3 ]
Salinas, Camila Hidalgo [4 ]
Broering, Dieter Clemens [3 ]
Malago, Massimo [3 ]
Spiro, Michael [5 ]
Raptis, Dimitri Aristotle [3 ]
机构
[1] Royal Free Hosp, Dept HPB Surg & Liver Transplant, London, England
[2] Univ Coll London Hosp NHS Fdn Trust, Dept Obstet & Gynaecol, London, England
[3] King Faisal Specialist Hosp & Res Ctr, Organ Transplant Ctr Excellence, Riyadh, Saudi Arabia
[4] Univ Oxford, Kellogg Coll, Oxford, England
[5] Royal Free Hosp, Dept Anaesthesia & Intens Care, London, England
关键词
artificial intelligence; ChatGPT; Clavien-Dindo classification; complications; large language models; outcomes; surgical residents; surgical trainees; SURGICAL COMPLICATIONS; SURGERY; QUALITY;
D O I
10.1097/SLA.0000000000006399
中图分类号
R61 [外科手术学];
学科分类号
摘要
Objective: To assess ChatGPT's capability of grading postoperative complications using the Clavien-Dindo classification (CDC) via artificial intelligence (AI) with natural language processing. Background: The CDC standardizes the grading of postoperative complications. However, consistent and precise application in dynamic clinical settings is challenging. AI offers a potential solution for efficient automated grading. Methods: ChatGPT's accuracy in defining the CDC, generating clinical examples, grading complications from existing scenarios, and interpreting complications from fictional as well as real world clinical summaries were tested. Results: ChatGPT 4 precisely mirrored the CDC, outperforming version 3.5. In generating clinical examples, ChatGPT 4 showcased 99% agreement with minor errors in urinary catheterization. For single complications, it achieved 97% accuracy. ChatGPT was able to accurately extract, grade, and analyze complications from free-text fictional discharge summaries. It demonstrated near-perfect performance when confronted with real-world discharge summaries: comparison between the human and ChatGPT4 grading showed a kappa value of 0.92 (95% CI: 0.82-1) (P<0.001). Conclusions: ChatGPT 4 demonstrates promising proficiency and accuracy in applying the CDC. In the future, AI has the potential to become the mainstay tool to accurately capture, extract, and analyze CDC data from clinical data sets.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 19 条
  • [1] Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians
    Asan, Onur
    Bayrak, Alparslan Emrah
    Choudhury, Avishek
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (06)
  • [2] Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models
    Chen, Yuyan
    Fu, Qiang
    Yuan, Yichen
    Wen, Zhihao
    Fan, Ge
    Liu, Dayiheng
    Zhang, Dongmei
    Li, Zhixu
    Xiao, Yanghua
    [J]. PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 245 - 255
  • [3] The Clavien-Dindo Classification of Surgical Complications Five-Year Experience
    Clavien, Pierre A.
    Barkun, Jeffrey
    de Oliveira, Michelle L.
    Vauthey, Jean Nicolas
    Dindo, Daniel
    Schulick, Richard D.
    de Santibanes, Eduardo
    Pekolj, Juan
    Slankamenac, Ksenija
    Bassi, Claudio
    Graf, Rolf
    Vonlanthen, Rene
    Padbury, Robert
    Cameron, John L.
    Makuuchi, Masatoshi
    [J]. ANNALS OF SURGERY, 2009, 250 (02) : 187 - 196
  • [4] The Comprehensive Complication Index (CCI®) Added Value and Clinical Perspectives 3 Years "Down the Line''
    Clavien, Pierre-Alain
    Vetter, Diana
    Staiger, Roxane D.
    Slankamenac, Ksenija
    Mehra, Tarun
    Graf, Rolf
    Puhan, Milo Alan
    [J]. ANNALS OF SURGERY, 2017, 265 (06) : 1045 - 1050
  • [5] Classification of surgical complications - A new proposal with evaluation in a cohort of 6336 patients and results of a survey
    Dindo, D
    Demartines, N
    Clavien, PA
    [J]. ANNALS OF SURGERY, 2004, 240 (02) : 205 - 213
  • [6] Dindo D., 2014, TREATMENT POSTOPERAT, P13, DOI [DOI 10.1007/978-1-4471-4354-3_3, 10.1007/978-1-4471-4354-3_3]
  • [7] Quality Assessment in Surgery Riding a Lame Horse
    Dindo, Daniel
    Hahnloser, Dieter
    Clavien, Pierre-Alain
    [J]. ANNALS OF SURGERY, 2010, 251 (04) : 766 - 771
  • [8] ChatGPT: these are not hallucinations - they're fabrications and falsifications
    Emsley, Robin
    [J]. SCHIZOPHRENIA, 2023, 9 (01)
  • [9] Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions
    Kumar, Pranjal
    Chauhan, Siddhartha
    Awasthi, Lalit Kumar
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 120
  • [10] Outcomes of elective liver surgery worldwide: a global, prospective, multicenter, cross-sectional study
    Malago, Massimo
    Serrablo, Alejandro
    Raptis, Dimitri Aristotle
    Dervenis, Christos
    Oldhafer, Karl Jurgen
    Machado, Marcel Autran
    Kokudo, Norihiro
    Line, Pal-Dag
    Hernandez-Alejandro, Roberto
    Breitenstein, Stefan
    van Gulik, Thomas
    Tokat, Yaman
    Neumann, Ulf Peter
    Borakati, Aditya
    Monaco, Andrea
    Schnitzbauer, Andreas A.
    Elfrink, Arthur
    Buis, Carlijn
    Salinas, Camila Hidalgo
    Imber, Charles
    Ferraro, Daniele
    Balci, Deniz
    Schadde, Erik
    Soggiu, Fiammetta
    Lurje, Georg
    Stavrou, Gregor A.
    Passas, Ioannis
    Pape, James
    Bemelmans, Marc
    de Boer, Marieke
    Madadi-Sanjani, Omid
    Olthof, Pim
    Koti, Rahul
    Gilg, Stefen
    Damink, Steven Olde
    Lang, Sven
    Pissanou, Theodora
    Hanna, Thomas
    Ardiles, Victoria
    Mostefa, Ahmed Belhadj
    Goransky, Jeremias
    McCormack, Lucas
    Resio, Nicolas
    Petrou, George
    Hugh, Thomas
    Lam, Vincent
    Gruenberger, Thomas
    Shcherba, Aliaksei
    Bertrand, Claude
    D'Hondt, Mathieu
    [J]. INTERNATIONAL JOURNAL OF SURGERY, 2023, 109 (12) : 3954 - 3966