Local and global attention mechanisms synergy for material property prediction

被引:0
作者
Jia, Bangliang [1 ,2 ]
Li, Qi [1 ,2 ]
Zhou, Wei [5 ]
Niu, Zhao [1 ,2 ]
Zang, Huaijuan [1 ,2 ]
Xu, Jiajia [5 ]
Ren, Yongsheng [3 ,4 ]
Ma, Wenhui [3 ,4 ]
Zhan, Shu [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Comp & Informat Engn, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming, Peoples R China
[4] Kunming Univ Sci & Technol, Natl Engn Res Ctr Vacuum Met, Kunming, Peoples R China
[5] Lingyang Ind Internet CO LTD, Hefei, Peoples R China
关键词
Graph neural networks; Machine learning; Dual-level attention; Crystalline material prediction; NEURAL-NETWORKS; 1ST PRINCIPLES; GRAPH;
D O I
10.1080/00268976.2025.2458645
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient machine learning (ML) models for predicting and discovering new materials present a significant challenge in materials science. Graph neural networks (GNNs) have garnered considerable attention due to their advantages in material applications. However, many GNNs fall short in representing the topological and geometric structures of crystals, leading to limited accuracy in characterising complex structures and predicting properties. This deficiency can lead to insufficient accuracy in capturing the intricate structural information of crystals, thus limiting the effectiveness of GNNs in characterising complex crystal structures and predicting their properties. To address this challenge, we introduce a dual-level attention crystal graph neural network with enhanced topological-geometric information (TGCGNN) for predicting the properties of crystalline materials. TGCGNN integrates a topologically and geometrically enhanced crystal graph attention layer (GeoGAT) with a global attention layer. The GeoGAT layer learns the topology and spatial geometry of crystals by incorporating the distance vectors between nodes and their neighbours, as well as bond lengths. Additionally, the global attention layer incorporates crystal composition to assess the collective contributions of atoms to the material properties. Through numerous experiments, we demonstrate that TGCGNN outperforms several state-of-the-art models, offering significant improvements in the accuracy of material property prediction.
引用
收藏
页数:13
相关论文
共 40 条
[1]   CEGANN: Crystal Edge Graph Attention Neural Network for multiscale classification of materials environment [J].
Banik, Suvo ;
Dhabal, Debdas ;
Chan, Henry ;
Manna, Sukriti ;
Cherukara, Mathew ;
Molinero, Valeria ;
Sankaranarayanan, Subramanian K. R. S. .
NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
[2]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[3]   Open Catalyst 2020 (OC20) Dataset and Community Challenges [J].
Chanussot, Lowik ;
Das, Abhishek ;
Goyal, Siddharth ;
Lavril, Thibaut ;
Shuaibi, Muhammed ;
Riviere, Morgane ;
Tran, Kevin ;
Heras-Domingo, Javier ;
Ho, Caleb ;
Hu, Weihua ;
Palizhati, Aini ;
Sriram, Anuroop ;
Wood, Brandon ;
Yoon, Junwoong ;
Parikh, Devi ;
Zitnick, C. Lawrence ;
Ulissi, Zachary .
ACS CATALYSIS, 2021, 11 (10) :6059-6072
[4]   A Critical Review of Machine Learning of Energy Materials [J].
Chen, Chi ;
Zuo, Yunxing ;
Ye, Weike ;
Li, Xiangguo ;
Deng, Zhi ;
Ong, Shyue Ping .
ADVANCED ENERGY MATERIALS, 2020, 10 (08)
[5]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[6]   A geometric-information-enhanced crystal graph network for predicting properties of materials [J].
Cheng, Jiucheng ;
Zhang, Chunkai ;
Dong, Lifeng .
COMMUNICATIONS MATERIALS, 2021, 2 (01)
[7]   Atomistic Line Graph Neural Network for improved materials property predictions [J].
Choudhary, Kamal ;
DeCost, Brian .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
[8]   The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design [J].
Choudhary, Kamal ;
Garrity, Kevin F. ;
Reid, Andrew C. E. ;
DeCost, Brian ;
Biacchi, Adam J. ;
Hight Walker, Angela R. ;
Trautt, Zachary ;
Hattrick-Simpers, Jason ;
Kusne, A. Gilad ;
Centrone, Andrea ;
Davydov, Albert ;
Jiang, Jie ;
Pachter, Ruth ;
Cheon, Gowoon ;
Reed, Evan ;
Agrawal, Ankit ;
Qian, Xiaofeng ;
Sharma, Vinit ;
Zhuang, Houlong ;
Kalinin, Sergei V. ;
Sumpter, Bobby G. ;
Pilania, Ghanshyam ;
Acar, Pinar ;
Mandal, Subhasish ;
Haule, Kristjan ;
Vanderbilt, David ;
Rabe, Karin ;
Tavazza, Francesca .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[9]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[10]   Compressing local atomic neighbourhood descriptors [J].
Darby, James P. ;
Kermode, James R. ;
Csanyi, Gabor .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)