Two-dimensional homogeneous electron gas with symmetric dual-gate screening: Exchange-correlation functional and other ground-state properties

被引:0
作者
Yang, Yiqi [1 ,3 ]
Yang, Yubo [2 ]
Chen, Kun [3 ]
Morales, Miguel A. [2 ]
Zhang, Shiwei [2 ]
机构
[1] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA
[2] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[3] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
关键词
MONTE-CARLO; DENSITY; ACCURATE;
D O I
10.1103/PhysRevB.111.045136
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The two-dimensional (2D) homogeneous electron gas (HEG) is a fundamental model in quantum many-body physics. It is important to theoretical and computational studies, where exchange-correlation energies computed in it serve as the foundation for density-functional calculations. It is also of direct relevance to a variety of experimental settings, especially with the rapid recent growth in 2D materials and moir & eacute; systems. In these experiments, metallic gates are often present, which screen the Coulomb interaction between electrons. The effect of the screening can qualitatively change the behavior of the 2D HEG, and requires accurate many-body computations to capture. In this paper, we perform state-of-the-art diffusion Monte Carlo (DMC) calculations in the 2D HEG subjected to symmetric dual-gate screening. We systematically compute the correlation energy across a range of densities and gate separations for both spin unpolarized and fully polarized systems. A global fit is obtained for the correlation energy, using these data and imposing various limiting behaviors obtained from perturbation analysis. The functional will allow density-functional calculations to be performed for a variety of realistic experimental setups, which can accurately account for the presence of gates. We also investigate how the gate screening affects the bulk modulus, pair correlation function, and the structure factor of the 2D HEG, which can potentially be probed in experiments.
引用
收藏
页数:19
相关论文
共 50 条
[1]  
Ashcroft N. W., Mermin N. D., Solid State Physics, (1976)
[2]  
Ando T., Fowler A. B., Stern F., Electronic properties of two-dimensional systems, Rev. Mod. Phys, 54, (1982)
[3]  
Tang Y., Li L., Li T., Xu Y., Liu S., Barmak K., Watanabe K., Taniguchi T., MacDonald A. H., Shan J., Mak K. F., Simulation of Hubbard model physics in (Equation presented) moiré superlattices, Nature (London), 579, (2020)
[4]  
Wu F., Lovorn T., Tutuc E., MacDonald A. H., Hubbard model physics in transition metal dichalcogenide moiré bands, Phys. Rev. Lett, 121, (2018)
[5]  
Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., Jarillo-Herrero P., Unconventional superconductivity in magic-angle graphene superlattices, Nature (London), 556, (2018)
[6]  
Xia Y., Han Z., Watanabe K., Taniguchi T., Shan J., Mak K. F., Unconventional superconductivity in twisted bilayer (Equation presented)
[7]  
Guo Y., Pack J., Swann J., Holtzman L., Cothrine M., Watanabe K., Taniguchi T., Mandrus D., Barmak K., Hone J., Et al., Superconductivity in twisted bilayer (Equation presented)
[8]  
Park H., Cai J., Anderson E., Zhang Y., Zhu J., Liu X., Wang C., Holtzmann W., Hu C., Liu Z., Et al., Observation of fractionally quantized anomalous Hall effect, Nature (London), 622, (2023)
[9]  
Lu Z., Han T., Yao Y., Reddy A. P., Yang J., Seo J., Watanabe K., Taniguchi T., Fu L., Ju L., Fractional quantum anomalous Hall effect in multilayer graphene, Nature (London), 626, (2024)
[10]  
Tang Y., Su K., Li L., Xu Y., Liu S., Watanabe K., Taniguchi T., Hone J., Jian C.-M., Xu C., Et al., Evidence of frustrated magnetic interactions in a Wigner-Mott insulator, Nat. Nanotechnol, 18, (2023)