The Bałaban variational problem in the non-linear sigma model

被引:0
|
作者
Dybalski, Wojciech [1 ]
Stottmeister, Alexander [2 ]
Tanimoto, Yoh [3 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
[2] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[3] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Lattice field theory; constructive QFT; nonlinear sigma models; Balaban's method; variational calculus; Quantum field theory; Wilsonian renormalization; GROSS-NEVEU MODEL; RENORMALIZATION; LATTICE; TRIVIALITY; GENERATION; FIELDS; MASS;
D O I
10.1142/S0129055X24610038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The minimization of the action of a QFT with a constraint dictated by the block averaging procedure is an important part of Ba & lstrok;aban's approach to renormalization. It is particularly interesting for QFTs with non-trivial target spaces, such as gauge theories or non-linear sigma models on a lattice. We analyze this step for the O(4) non-linear sigma model in two dimensions and demonstrate, in this case, how various ingredients of Ba & lstrok;aban's approach play together. First, using variational calculus on Lie groups, the equation for the critical point is derived. Then, this non-linear equation is solved by the Banach contraction mapping theorem. This step requires detailed control of lattice Green functions and their integral kernels via random walk expansions.
引用
收藏
页数:53
相关论文
共 50 条
  • [1] NON-LINEAR SUPER SIGMA MODEL
    ANEVA, BL
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1980, 33 (07): : 905 - 907
  • [2] VARIATIONAL ANALYSIS OF NON-LINEAR KINETICS PROBLEM
    SELENGUT, DS
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1964, 7 (02): : 256 - &
  • [3] A VARIATIONAL PRINCIPLE FOR A NON-LINEAR DIFFUSION PROBLEM
    ATANACKOVIC, TM
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1985, 28 (04) : 882 - 883
  • [4] Dimensional crossover in the non-linear sigma model
    O'Connor, D
    Stephens, CR
    Santiago, JA
    REVISTA MEXICANA DE FISICA, 2002, 48 (04) : 300 - 306
  • [5] Amplitude relations in non-linear sigma model
    Gang Chen
    Yi-Jian Du
    Journal of High Energy Physics, 2014
  • [6] REINTERPRETATION OF THE NON-LINEAR SIGMA MODEL WITH TORSION
    GEGENBERG, J
    KELLY, PF
    MANN, RB
    MCARTHUR, R
    VINCENT, D
    MODERN PHYSICS LETTERS A, 1988, 3 (18) : 1791 - 1796
  • [7] A Lax equation for the non-linear sigma model
    Brunelli, JC
    Constandache, A
    Das, A
    PHYSICS LETTERS B, 2002, 546 (1-2) : 167 - 176
  • [8] A fuzzy supersymmetric non-linear sigma model
    Kürkçüoglu, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (31): : 5359 - 5366
  • [9] Amplitude relations in non-linear sigma model
    Chen, Gang
    Du, Yi-Jian
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [10] REDUCTION OF THE CPN NON-LINEAR SIGMA MODEL
    EICHENHERR, H
    HONERKAMP, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (02) : 374 - 376