Group cohomology for modular forms with singularities

被引:0
|
作者
Choi, Dohoon [1 ]
Lim, Subong [2 ]
机构
[1] Korea Univ, Dept Math, 145 Anam Ro, Seoul 02841, South Korea
[2] Sungkyunkwan Univ, Dept Math Educ, Seoul 03063, South Korea
基金
新加坡国家研究基金会;
关键词
Cohomology; Meromorphic modular form; Weakly holomorphic modular form; EICHLER COHOMOLOGY; AUTOMORPHIC-FORMS; THEOREM;
D O I
10.1016/j.jmaa.2025.129271
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a nonzero divisor D :=Sigma(n)(t=1) pD(t)D(t) of X0(1) with pD(t )> 0, let M-k(!,D)(SL2(Z)) be the space of meromorphic modular forms f of integral weight k on SL2(Z) such that f is holomorphic except at {D-1, ... , D-n} and that the order of pole of f at each Q is an element of {D-1, ... , D-n} is less than or equal to pQ. In this paper, we give an isomorphism between M-!,M-D (k) (SL2(Z)) and the first cohomology group with a certain coefficient module PD when k is a negative even integer. More generally, by considering another coefficient module P- k(weak) , we prove that there exists an isomorphism between M-k(!)(SL2(Z)) and H-1(SL2(Z), P-k(weak)),where M-k(!)(SL2(Z)) denotes the space of weakly holomorphic modular forms of integral weight k on SL2(Z).
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Congruences between Siegel modular forms on the level of group cohomology
    Buecker, K
    ANNALES DE L INSTITUT FOURIER, 1996, 46 (04) : 877 - &
  • [2] ELLIPTIC COHOMOLOGY AND MODULAR-FORMS
    LANDWEBER, PS
    LECTURE NOTES IN MATHEMATICS, 1988, 1326 : 55 - 68
  • [3] EICHLER COHOMOLOGY FOR GENERALIZED MODULAR FORMS
    Knopp, Marvin
    Lehner, Joseph
    Raji, Wissam
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (06) : 1049 - 1059
  • [4] Twisted modular forms and parabolic cohomology
    Lee, MH
    ACTA ARITHMETICA, 2003, 109 (04) : 309 - 319
  • [5] Hochschild cohomology and the modular group
    Lentner, Simon
    Mierach, Svea Nora
    Schweigert, Christoph
    Sommerhauser, Yorck
    JOURNAL OF ALGEBRA, 2018, 507 : 400 - 420
  • [6] EICHLER COHOMOLOGY FOR GENERALIZED MODULAR FORMS II
    Knopp, Marvin
    Raji, Wissam
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (05) : 1083 - 1090
  • [7] EICHLER COHOMOLOGY THEOREM FOR GENERALIZED MODULAR FORMS
    Raji, Wissam
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (04) : 1103 - 1113
  • [8] MODULAR FORMS, DE RHAM COHOMOLOGY AND CONGRUENCES
    Kazalicki, Matija
    Scholl, Anthony J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (10) : 7097 - 7117
  • [9] SIEGEL CUSP MODULAR-FORMS AND COHOMOLOGY
    NENASHEV, AY
    MATHEMATICS OF THE USSR-IZVESTIYA, 1986, 50 (06): : 559 - 586
  • [10] HOCHSCHILD COHOMOLOGY RING OF THE MODULAR GROUP
    Alekhin, A. P.
    Volkov, Yu. V.
    Generalov, A. I.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2015, 26 (01) : 1 - 25