Model Error Modeling for a Class of Multivariable Systems Utilizing Stochastic Embedding Approach with Gaussian Mixture Models

被引:0
作者
Orellana, Rafael [1 ]
Coronel, Maria [2 ]
Carvajal, Rodrigo [3 ]
Escarate, Pedro [3 ]
Aguero, Juan C. [4 ]
机构
[1] Univ Santiago de ChileUSACH, Dept Ingn Elect, Ave Victor Jara 3519, Santiago 9170124, Chile
[2] Univ Tecnol Metropolitana, Dept Electr, Ave Jose Pedro Alessandri 1242, Santiago 7800002, Chile
[3] Pontificia Univ Catolica Valparaiso, Escuela Ingn Elect, Ave Brasil 2147, Valparaiso 2362804, Chile
[4] Univ Tecn Federico Santa Maria, Dept Elect, Ave Espana 1680, Valparaiso 2390123, Chile
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 03期
关键词
maximum likelihood; multivariable uncertainty modeling; stochastic embedding; expectation-maximization; Gaussian mixture model; MAXIMUM-LIKELIHOOD-ESTIMATION; ROBUST-CONTROL; EM ALGORITHM; IDENTIFICATION; DESIGN;
D O I
10.3390/sym17030426
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many real-world multivariable systems need to be modeled to capture the interconnected behavior of their physical variables and to understand how uncertainty in actuators and sensors affects the system dynamics. In system identification, some estimation algorithms are formulated as multivariate data problems by assuming symmetric noise distributions, yielding deterministic system models. Nevertheless, modern multivariable systems must incorporate the uncertainty behavior as a part of the system model structure, taking advantage of asymmetric distributions to model the uncertainty. This paper addresses the uncertainty modeling and identification of a class of multivariable linear dynamic systems, adopting a Stochastic Embedding approach. We consider a nominal system model and a Gaussian mixture distributed error-model driven by an exogenous input signal. The error-model parameters are treated as latent variables and a Maximum Likelihood algorithm that functions by marginalizing the latent variables is obtained. An Expectation-Maximization algorithm that jointly uses the measurements from multiple independent experiments is developed, yielding closed-form expressions for the Gaussian mixture estimators and the noise variance. Numerical simulations demonstrate that our approach yields accurate estimates of both the multivariable nominal system model parameters and the noise variance, even when the error-model non-Gaussian distribution does not correspond to a Gaussian mixture model.
引用
收藏
页数:29
相关论文
共 67 条
[1]   Maximum likelihood estimation of local stellar kinematics [J].
Aghajani, T. ;
Lindegren, L. .
ASTRONOMY & ASTROPHYSICS, 2013, 551
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]   MIMO robust control for HVAC systems [J].
Anderson, Michael ;
Buehner, Michael ;
Young, Peter ;
Hittle, Douglas ;
Anderson, Charles ;
Tu, Jilin ;
Hodgson, David .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (03) :475-483
[4]   Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Elliott, Robert J. .
PROCEEDINGS OF THE IEEE, 2007, 95 (05) :953-977
[5]  
Balenzuela MP, 2018, IEEE DECIS CONTR P, P694, DOI 10.1109/CDC.2018.8619299
[6]   Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models [J].
Biernacki, C ;
Celeux, G ;
Govaert, G .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 41 (3-4) :561-575
[7]   Exponentiated Generalized Xgamma Distribution Based on Dual Generalized Order Statistics: A Bayesian and Maximum Likelihood Approach [J].
Binhimd, Sulafah M. S. ;
Kalantan, Zakiah I. ;
Abd AL-Fattah, Asmaa M. ;
EL-Helbawy, Abeer A. ;
AL-Dayian, Gannat R. ;
Abd EL-Kader, Rabab E. ;
Abd Elaal, Mervat K. .
SYMMETRY-BASEL, 2024, 16 (12)
[8]   Parameter Identification of Synchronous Condenser and Its Excitation System Considering Multivariate Coupling and Symmetry Characteristic [J].
Cao, Yongji ;
Song, Yuman ;
Liu, Xiaoming ;
Li, Changgang .
SYMMETRY-BASEL, 2024, 16 (12)
[9]   A data augmentation approach for a class of statistical inference problems [J].
Carvajal, Rodrigo ;
Orellana, Rafael ;
Katselis, Dimitrios ;
Escarate, Pedro ;
Carlos Aguero, Juan .
PLOS ONE, 2018, 13 (12)
[10]   Identification of Wiener state-space models utilizing Gaussian sum smoothing [J].
Cedeno, Angel L. ;
Gonzalez, Rodrigo A. ;
Carvajal, Rodrigo ;
Aguero, Juan C. .
AUTOMATICA, 2024, 166