Prediction of cold chain loading environment for agricultural products based on K-medoids-LSTM-XGBoost ensemble model

被引:0
作者
Luo, Zhijie [1 ,2 ,3 ]
Liu, Wenjing [1 ]
Wu, Jianhao [1 ]
Aiqing, Huang [1 ]
Guo, Jianjun [1 ,2 ,3 ]
机构
[1] Zhongkai Univ Agr & Engn, Guangzhou, Peoples R China
[2] Zhongkai Univ Agr & Engn, Smart Agr Engn Technol Res Ctr, Guangzhou, Peoples R China
[3] Zhongkai Univ Agr & Engn, Guangzhou Key Lab Agr Prod Qual & Safety Traceabil, Guangzhou, Peoples R China
关键词
K-medoids; XGBoost; Ensemble model; Cold chain loading; Prediction;
D O I
10.7717/peerj-cs.2510
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cold chain loading is a crucial aspect in the process of cold chain transportation, aiming to enhance the quality, reduce energy consumption, and minimize costs associated with cold chain logistics. To achieve these objectives, this study proposes a prediction method based on the combined model of K-medoids-long short-term memory (LSTM) networks-eXtreme Gradient Boosting (XGBoost). This ensemble model accurately predicts the temperature for a specified future time period, providing an appropriate cold chain loading environment for goods. After obtaining temperature data pertaining to the cold chain loading environment, the K-medoids algorithm is initially employed to fuse the data, which is then fed into the constructed ensemble model. The model's mean absolute error (MAE) is determined to be 2.5343. The experimental results demonstrate that the K-medoids-LSTM-XGBoost combined prediction model outperforms individual models and similar ensemble models in accurately predicting the agricultural product's cold chain loading environment. This model offers improved monitoring and management capabilities for personnel involved in the cold chain loading process.
引用
收藏
页数:26
相关论文
共 23 条
  • [1] Avanijaa J., 2021, Turkish Journal of Computer and Mathematics Education (TURCOMAT), V12, P2151, DOI [https://doi.org/10.17762/turcomat.v12i2.1870, DOI 10.17762/TURCOMAT.V12I2.1870]
  • [2] 基于GRU神经网络模型的冷链运输温度时序预测
    陈谦
    杨涵
    王宝刚
    李文生
    钱建平
    [J]. 农业大数据学报, 2022, 4 (01) : 82 - 88
  • [3] Base station traffic prediction using XGBoost-LSTM with feature enhancement
    Du, Qingbo
    Yin, Faming
    Li, Zongchen
    [J]. IET NETWORKS, 2020, 9 (01) : 29 - 37
  • [4] [都若曦 Du Ruoxi], 2020, [中国医药工业杂志, Chinese Journal of Pharmaceuticals], V51, P434
  • [5] Diagnostic of the spectral properties of Aquila X-1 by Insight-HXMT snapshots during the early propeller phase
    Gungor, C.
    Ge, M. Y.
    Zhang, S.
    Santangelo, A.
    Zhang, S. N.
    Lu, F. J.
    Zhang, Y.
    Chen, Y. P.
    Tao, L.
    Yang, Y. J.
    Bu, Q. C.
    Cai, C.
    Cao, X. L.
    Chang, Z.
    Chen, G.
    Chen, L.
    Chen, T. X.
    Chen, Y.
    Chen, Y. B.
    Cui, W.
    Cui, W. W.
    Deng, J. K.
    Dong, Y. W.
    Du, Y. Y.
    Fu, M. X.
    Gao, G. H.
    Gao, H.
    Gao, M.
    Gu, Y. D.
    Guan, J.
    Guo, C. C.
    Han, D. W.
    Huang, Y.
    Huo, J.
    Ji, L.
    Jia, S. M.
    Jiang, L. H.
    Jiang, W. C.
    Jin, J.
    Kong, L. D.
    Li, B.
    Li, C. K.
    Li, G.
    Li, M. S.
    Li, T. P.
    Li, W.
    Li, X.
    Li, X. B.
    Li, X. F.
    Li, Y. G.
    [J]. JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2020, 25 : 10 - 16
  • [6] Prediction Modelling of Cold Chain Logistics Demand Based on Data Mining Algorithm
    He, Bo
    Yin, Lvjiang
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] Using the Smartphone as an Augmented Reality Device in ETO Industry
    Jahn, Niklas
    Friedewald, Axel
    Loedding, Hermann
    [J]. ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: TOWARDS SMART AND DIGITAL MANUFACTURING, PT II, 2020, 592 : 538 - 546
  • [8] Predicting quality attributes of strawberry packed under modified atmosphere throughout the cold chain
    Joshi, Kompal
    Tiwari, Brijesh
    Cullen, Patrick J.
    Frias, Jesus M.
    [J]. FOOD PACKAGING AND SHELF LIFE, 2019, 21
  • [9] Li CC, 2022, CELL MOL NEUROBIOL, V42, P2019, DOI [10.1007/s10571-021-01089-0, 10.3969/j.issn.0253-2417.2022.05.001]
  • [10] [李青勇 Li Qingyong], 2021, [航空兵器, Aero Weaponry], V28, P49