Electrochemical and Thermal Evolution of P2 Na2/3MnO2

被引:1
作者
Thilakarathna, B. D. K. K. [1 ]
Mittal, Uttam [1 ]
Peng, Jian [1 ]
Brocklebank, Daniel [1 ]
Brand, Helen E. A. [2 ]
Sharma, Neeraj [1 ]
机构
[1] UNSW, Sch Chem, Sydney, NSW 2052, Australia
[2] Australian Nucl Sci & Technol Org, Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会;
关键词
Structural evolution; Sodium-ion batteries; Cathode; Synchrotron X-ray powder diffraction; X LESS-THAN; CATHODE MATERIALS; ION BATTERY; PERFORMANCE; NA0.67MNO2; OXIDES; CU;
D O I
10.1002/cphc.202400832
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
P2 Na2/3MnO2 can be used as a cathode material in sodium-ion batteries. Here, the electrochemical-temperature-dependent evolution of P2 Na2/3MnO2 is investigated using X-ray powder diffraction. P2 Na2/3MnO2 powder under a N2 atmosphere shows evidence of the formation of a monoclinic C2/m phase, from about 450 degrees C. The P2 Na2/3MnO2 electrode sealed in a capillary undergoes a sequence of phase transitions from the as-prepared hexagonal P63/mmc to a secondary hexagonal P63/mmc phase followed by a transition to Mn3O4 and subsequently MnO. NaF also appears parallel to the formation of the secondary hexagonal phase. These transitions suggest a local reducing environment as the Mn oxidation state evolves from 3+/4+ to 2+. The samples at various states of charge show similar thermal evolution with the exception of the discharged (Na-inserted) state which features a slightly more complex evolution. Understanding the structure and thermal evolution at various states of charge and under various conditions provides insight into the stability of these potential cathode materials.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Prospects and Limits of Energy Storage in Batteries [J].
Abraham, K. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (05) :830-844
[2]   β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries [J].
Billaud, Juliette ;
Clement, Raphaele J. ;
Armstrong, A. Robert ;
Canales-Vazquez, Jesus ;
Rozier, Patrick ;
Grey, Clare P. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (49) :17243-17248
[3]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[4]   Review-Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials [J].
Clement, Raphaele J. ;
Bruce, Peter G. ;
Grey, Clare P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2589-A2604
[5]  
Croguennec L., 2015, CHEML SOC, P3140, DOI [10.1021/ja507828x, DOI 10.1021/JA507828X]
[6]   Structure and Dynamics of Fluorophosphate Na-Ion Battery Cathodes [J].
Dacek, Stephen T. ;
Richards, William D. ;
Kitchaev, Daniil A. ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2016, 28 (15) :5450-5460
[7]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85
[8]   Thermally and Electrochemically Driven Topotactical Transformations in Sodium Layered Oxides NaxVO2 [J].
Didier, Christophe ;
Guignard, Marie ;
Suchomel, Matthew R. ;
Carlier, Dany ;
Darriet, Jacques ;
Delmas, Claude .
CHEMISTRY OF MATERIALS, 2016, 28 (05) :1462-1471
[9]   High-Voltage, Highly Reversible Sodium Batteries Enabled by Fluorine-Rich Electrode/Electrolyte Interphases [J].
Guo, Xu-Feng ;
Yang, Zhuo ;
Zhu, Yan-Fang ;
Liu, Xiao-Hao ;
He, Xiang-Xi ;
Li, Li ;
Qiao, Yun ;
Chou, Shu-Lei .
SMALL METHODS, 2022, 6 (06)
[10]   The Distance Between Phosphate-Based Polyanionic Compounds and Their Practical Application For Sodium-Ion Batteries [J].
Hao, Zhiqiang ;
Shi, Xiaoyan ;
Yang, Zhuo ;
Zhou, Xunzhu ;
Li, Lin ;
Ma, Chang-Qi ;
Chou, Shulei .
ADVANCED MATERIALS, 2024, 36 (07)