Addressing the Data Scarcity Problem in Ecotoxicology via Small Data Machine Learning Methods

被引:0
作者
Wang, Ying [1 ]
Dong, Jinchu [1 ]
Zhou, Yunchi [1 ]
Cheng, Yinghao [1 ,2 ]
Zhao, Xiaoli [3 ]
Peijnenburg, Willie J. G. M. [4 ,5 ]
Vijver, Martina G. [4 ]
Leung, Kenneth M. Y. [6 ,7 ]
Fan, Wenhong [1 ]
Wu, Fengchang [3 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Nucl & Radiat Safety Ctr, Beijing 100082, Peoples R China
[3] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
[4] Leiden Univ, Inst Environm Sci, NL-2300 RA Leiden, Netherlands
[5] Natl Inst Publ Hlth & Environm, Ctr Safety Prod & Subst, NL-3720 BA Bilthoven, Netherlands
[6] City Univ Hong Kong, Dept Chem, State Key Lab Marine Pollut, Hong Kong 999077, Peoples R China
[7] City Univ Hong Kong, Sch Energy & Environm, Hong Kong 999077, Peoples R China
基金
北京市自然科学基金; 国家重点研发计划; 欧盟地平线“2020”; 中国国家自然科学基金;
关键词
ecotoxicity; small data machine learning (SDML); prediction; data augmentation; modeling workflow; artificial intelligence;
D O I
10.1021/acs.est.5c00510
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
引用
收藏
页码:5867 / 5871
页数:5
相关论文
共 15 条
  • [1] When small data beats big data
    Faraway, Julian J.
    Augustin, Nicole H.
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 136 : 142 - 145
  • [2] A Bayesian approach to unsupervised one-shot learning of object categories
    Fei-Fei, L
    Fergus, R
    Perona, P
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 1134 - 1141
  • [3] Enhancing Data Integration, Interoperability, and Reuse to Address Complex and Emerging Environmental Health Problems
    Heacock, Michelle L.
    Lopez, Adeline R.
    Amolegbe, Sara M.
    Carlin, Danielle J.
    Henry, Heather F.
    Trottier, Brittany A.
    Velasco, Maria L.
    Suk, William A.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (12) : 7544 - 7552
  • [4] Water quality prediction based on sparse dataset using enhanced machine learning
    Huang, Sheng
    Xia, Jun
    Wang, Yueling
    Lei, Jiarui
    Wang, Gangsheng
    [J]. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY, 2024, 20
  • [5] A genetic algorithm-based virtual sample generation technique to improve small data set learning
    Li, Der-Chiang
    Wen, I-Hsiang
    [J]. NEUROCOMPUTING, 2014, 143 : 222 - 230
  • [6] Perspectives on Advancing Multimodal Learning in Environmental Science and Engineering Studies
    Liu, Wenjia
    Chen, Jingwen
    Wang, Haobo
    Fu, Zhiqiang
    Peijnenburg, Willie J. G. M.
    Hong, Huixiao
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (38) : 16690 - 16703
  • [7] Machine Learning for Environmental Toxicology: A Call for Integration and Innovation
    Miller, Thomas H.
    Gallidabino, Matteo D.
    MacRae, James I.
    Hogstrand, Christer
    Bury, Nicolas R.
    Barron, Leon P.
    Snape, Jason R.
    Owen, Stewart F.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (22) : 12953 - 12955
  • [8] The Bigger Fish: A Comparison of Meta-Learning QSAR Models on Low-Resourced Aquatic Toxicity Regression Tasks
    Schlender, Thalea
    Viljanen, Markus
    van Rijn, Jan N.
    Mohr, Felix
    Peijnenburg, Willie J. G. M.
    Hoos, Holger H.
    Rorije, Emiel
    Wong, Albert
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (46) : 17818 - 17830
  • [9] Small sample sizes reduce the replicability of task-based fMRI studies
    Turner, Benjamin O.
    Paul, Erick J.
    Miller, Michael B.
    Barbey, Aron K.
    [J]. COMMUNICATIONS BIOLOGY, 2018, 1
  • [10] Review of Classification Methods on Unbalanced Data Sets
    Wang, Le
    Han, Meng
    Li, Xiaojuan
    Zhang, Ni
    Cheng, Haodong
    [J]. IEEE ACCESS, 2021, 9 : 64606 - 64628