On the Largest Character Degree and Solvable Subgroups of Finite Groups

被引:0
作者
Wu, Zongshu [1 ]
Yang, Yong [2 ]
机构
[1] Stanford Online High Sch, Redwood City, CA 94063 USA
[2] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
关键词
D O I
10.1007/s00025-025-02401-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group, and pi be a set of primes. The pi-core O-pi(G) is the unique maximal normal pi-subgroup of G, and b(G) is the largest irreducible character degree of G. In 2017, Qian and Yang proved that if H is a solvable pi-subgroup of G, then |HO pi(G)/O-pi(G)|<= b(G)(3). In this paper, we improve the exponent of 3 to 3log(504)(168)<2.471. Along the way, we also prove that if a solvable group P acts faithfully on X, then there is some 3-coloring of X such that there are no more than root|P| elements of P that preserve the coloring.
引用
收藏
页数:12
相关论文
共 12 条
[1]  
Breuer T., 2024, The GAP Character Table Library-a GAP package, 1.3.9
[3]  
Huppert B., 1967, Endliche Gruppen I, DOI [10.1007/978-3-642-64981-3, DOI 10.1007/978-3-642-64981-3]
[4]  
Manz O, 1993, REPRESENTATIONS SOLV, DOI [10.1017/CBO9780511525971, DOI 10.1017/CBO9780511525971]
[5]  
Mazurov VD., 1993, Algebra i Logika, V32, P267
[6]   The largest character degree and the Sylow subgroups of finite groups [J].
Qian, GH ;
Shi, WJ .
JOURNAL OF ALGEBRA, 2004, 277 (01) :165-171
[7]   The largest character degree, conjugacy class size and subgroups of finite groups [J].
Qian, Guohua ;
Yang, Yong .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (05) :2218-2226
[8]  
The GAP Group, 2024, GAP-Groups, Algorithms, and Programming
[9]  
Vasilyev AV., 1994, Algebra i Logika, V33, P603
[10]  
Vasilyev AV., 1998, Algebra i Logika, V37, P17