Iron enrichment and alumina recovery from bauxite residue through hydrogen reduction followed by alkaline leaching and CaO circulation

被引:0
作者
Kar, Manish Kumar [1 ]
Zhu, Mengyi [1 ]
Safarian, Jafar [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, Alfred Getz Vei 2, N-7491 Trondheim, Norway
基金
欧盟地平线“2020”;
关键词
Bauxite residue; hazardous; self-hardened; hydrogen reduction; calcium looping; leaching residue; environmental; resource utilisation; RARE-EARTHS; RED MUD;
D O I
10.1080/00084433.2024.2437225
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The alumina industry faces a significant challenge in effectively utilising bauxite residue due to its hazardous nature. A potential solution involves recovering iron and alumina from the bauxite residue, leading to a substantial reduction in residue volume and also drawing some material value. This study involved the production of self-hardened calcite pellets from the bauxite residue, which were then subjected to hydrogen reduction and subsequently leached with a sodium carbonate solution for alumina extraction. In an effort to establish a circular material flow, the leaching residue, which contains most of calcium and metallic iron, was reintegrated into the process to produce self-hardened pellets. Analytical techniques such as X-ray diffraction, electron probe microanalysis, X-ray fluorescence, and inductively coupled plasma-mass spectroscopy were employed for comprehensive microstructural, chemical, and elemental evaluations of the samples. The integrated process yielded a final alumina recovery rate exceeding 62%, a substantial improvement compared to the process lacking calcium looping. The incorporation of leaching residue recycling played a crucial role in significantly reducing calcium consumption throughout the integrated process, reaching approximately 70%. This research signifies a promising approach to efficiently recover valuable components from bauxite residue while mitigating environmental concerns and optimising resource utilisation. L'industrie de l'alumine fait face & agrave; un d & eacute;fi important dans l'utilisation efficace des r & eacute;sidus de bauxite en raison de leur caract & egrave;re dangereux. Une solution potentielle implique la r & eacute;cup & eacute;ration du fer et de l'alumine & agrave; partir des r & eacute;sidus de bauxite, amenant une r & eacute;duction substantielle du volume de r & eacute;sidus et tirant & eacute;galement une certaine valeur mat & eacute;rielle. Cette & eacute;tude impliquait la production de boulettes de calcite auto-durcies & agrave; partir des r & eacute;sidus de bauxite, qui & eacute;taient ensuite soumises & agrave; une r & eacute;duction par l'hydrog & egrave;ne puis trait & eacute;es par lixiviation avec une solution de carbonate de sodium pour l'extraction de l'alumine. Dans un effort pour & eacute;tablir un flux de mati & egrave;re circulaire, les r & eacute;sidus de lixiviation, qui contiennent presque tout le calcium et le fer m & eacute;tallique, & eacute;taient r & eacute;int & eacute;gr & eacute;s dans le proc & eacute;d & eacute; pour produire des boulettes auto-durcies. On a utilis & eacute; des techniques analytiques telles que la diffraction des rayons X, la microanalyse par & eacute;lectrons, la fluorescence des rayons X et la spectroscopie de masse & agrave; plasma & agrave; couplage inductif pour des & eacute;valuations microstructurales, chimiques et & eacute;l & eacute;mentaires compl & egrave;tes des & eacute;chantillons. Le proc & eacute;d & eacute; int & eacute;gr & eacute; a produit un taux final de r & eacute;cup & eacute;ration de l'alumine au-del & agrave; de 62%, une am & eacute;lioration substantielle par rapport au proc & eacute;d & eacute; d & eacute;pourvu de boucle de calcium. L'incorporation du recyclage des r & eacute;sidus de lixiviation a jou & eacute; un r & ocirc;le crucial dans la r & eacute;duction importante de la consommation de calcium tout au long du proc & eacute;d & eacute; int & eacute;gr & eacute;, atteignant approximativement 70%. Cette recherche signifie une approche prometteuse pour r & eacute;cup & eacute;rer efficacement les composants valables des r & eacute;sidus de bauxite tout en att & eacute;nuant les inqui & eacute;tudes environnementales et en optimisant l'utilisation des ressources.
引用
收藏
页数:14
相关论文
共 20 条
[1]   Aluminium Production Process: Challenges and Opportunities [J].
Alamdari, Houshang .
METALS, 2017, 7 (04)
[2]   Integrated carbothermic smelting - Acid baking - Water leaching process for extraction of scandium, aluminum, and iron from bauxite residue [J].
Anawati, John ;
Azimi, Gisele .
JOURNAL OF CLEANER PRODUCTION, 2022, 330
[3]  
Azof FI., 2019, European Metallurgical Conference 2019, Germany, V2
[4]   Mud2Metal: Lessons Learned on the Path for Complete Utilization of Bauxite Residue Through Industrial Symbiosis [J].
Balomenos, Efthymios ;
Davris, Panagiotis ;
Pontikes, Yiannis ;
Panias, Dimitrios .
JOURNAL OF SUSTAINABLE METALLURGY, 2017, 3 (03) :551-560
[5]   Recovery of Rare Earths and Major Metals from Bauxite Residue (Red Mud) by Alkali Roasting, Smelting, and Leaching [J].
Borra, Chenna Rao ;
Blanpain, Bart ;
Pontikes, Yiannis ;
Binnemans, Koen ;
Van Gerven, Tom .
JOURNAL OF SUSTAINABLE METALLURGY, 2017, 3 (02) :393-404
[6]   Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery [J].
Borra C.R. ;
Blanpain B. ;
Pontikes Y. ;
Binnemans K. ;
Van Gerven T. .
Borra, Chenna Rao (chennarao.borra@cit.kuleuven.be), 1600, Springer Science and Business Media Deutschland GmbH (02) :28-37
[7]   Recovery of Iron and Aluminum from Bauxite Residue by Carbothermic Reduction and Slag Leaching [J].
Ekstroem, K. E. ;
Bugten, A. Voll ;
van Der Eijk, C. ;
Lazou, A. ;
Balomenos, E. ;
Tranell, G. .
JOURNAL OF SUSTAINABLE METALLURGY, 2021, 7 (03) :1314-1326
[8]   The History, Challenges, and New Developments in the Management and Use of Bauxite Residue [J].
Evans K. .
Journal of Sustainable Metallurgy, 2016, 2 (4) :316-331
[9]   An Investigation on Reduction of Calcium Added Bauxite Residue Pellets by Hydrogen and Iron Recovery through Physical Separation Methods [J].
Hassanzadeh, Ahmad ;
Kar, Manish K. ;
Safarian, Jafar ;
Kowalczuk, Przemyslaw B. .
METALS, 2023, 13 (05)
[10]  
Hoseinpur A., 2022, P 61 C MET COM 2022, P119, DOI [10.1007/978-3-031-17425-419, DOI 10.1007/978-3-031-17425-419]