Cell-free osteoarthritis treatment with dual-engineered chondrocyte-targeted extracellular vesicles derived from mechanical loading primed mesenchymal stem cells

被引:0
作者
Wang, Peng [1 ,2 ]
Zhao, Haiyue [2 ,3 ]
Chen, Wei [2 ]
Guo, Yuhui [2 ]
Zhang, Shuo [2 ,3 ]
Xing, Xin [2 ]
Yang, Shuai [2 ,3 ]
Wang, Fengkun [2 ,3 ]
Wang, Juan [2 ]
Shao, Zengwu [1 ]
Zhang, Yingze [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Orthopaed, 1277 Jiefang Ave, Wuhan 430022, Peoples R China
[2] Hebei Med Univ, Dept Orthopaed Surg, Hosp 3, Shijiazhuang, Peoples R China
[3] Nankai Univ, Sch Med, Tianjin, Peoples R China
来源
JOURNAL OF TISSUE ENGINEERING | 2025年 / 16卷
基金
中国国家自然科学基金;
关键词
Osteoarthritis; extracellular vesicles; mechanical loading; mesenchymal stem cells; chondrocyte-targeted peptide; CARTILAGE; BONE; EXOSOMES;
D O I
10.1177/20417314241312563
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Osteoarthritis (OA) is an age-related chronic inflammatory disease, predominantly characterized by chondrocyte senescence and extracellular matrix (ECM) degradation. Although mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) are promising for promoting cartilage regeneration, their clinical application is limited by inconsistent therapeutic effects and insufficient targeting capabilities. Mechanical loading shows potential to optimize MSC-EVs for OA treatment, while the underlying mechanism is not clear. In this study, EVs derived from mechanical loading-primed MSCs (ML-EVs) demonstrate prominent efficacy in maintaining ECM homeostasis and relieving chondrocyte senescence, thereby mitigating OA. Subsequent miRNA sequencing reveals that ML-EVs exert their effects by delivering miR-27b-3p, which targets ROR1 mRNA in chondrocytes and suppresses downstream NF-kappa B pathways. By modulating the ROR1/NF-kappa B axis, miR-27b-3p effectively restrains ECM degradation and chondrocyte senescence. To optimize therapeutic efficacy of EVs, miR-27b-3p is overexpressed within EVs (miROE-EVs), and a chondrocyte-targeted peptide (CTP) is conjugated to their surface, thereby constructing dual-engineered chondrocyte-targeted EVs (CTP/miROE-EVs). CTP/miROE-EVs exhibit excellent ability to specifically target cartilage and ameliorate OA pathology. In conclusion, this study underscores the critical role of mechanical loading in augmenting effectiveness of EVs in mitigating OA and introduces dual-engineered EVs that specifically target chondrocytes, providing a promising therapeutic strategy for OA.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Extracellular vesicles derived from LPS-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model [J].
Duan, Ao ;
Shen, Kai ;
Li, Beichen ;
Li, Cong ;
Zhou, Hao ;
Kong, Renyi ;
Shao, Yuqi ;
Qin, Jian ;
Yuan, Tangbo ;
Ji, Juan ;
Guo, Wei ;
Wang, Xipeng ;
Xue, Tengfei ;
Li, Lei ;
Huang, Xinxin ;
Sun, Yuqin ;
Cai, Zhenyu ;
Liu, Wei ;
Liu, Feng .
STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
[42]   Mesenchymal Stem Cell (MSC)-Derived Extracellular Vesicles Protect from Neonatal Stroke by Interacting with Microglial Cells [J].
Pathipati, Praneeti ;
Lecuyer, Matthieu ;
Faustino, Joel ;
Strivelli, Jacqueline ;
Phinney, Donald G. ;
Vexler, Zinaida S. .
NEUROTHERAPEUTICS, 2021, 18 (03) :1939-1952
[43]   Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Attenuate Mast Cell Activation [J].
Lin, Tzou-Yien ;
Chang, Tsong-Min ;
Huang, Huey-Chun .
ANTIOXIDANTS, 2022, 11 (11)
[44]   Mesenchymal Stem Cell (MSC)–Derived Extracellular Vesicles Protect from Neonatal Stroke by Interacting with Microglial Cells [J].
Praneeti Pathipati ;
Matthieu Lecuyer ;
Joel Faustino ;
Jacqueline Strivelli ;
Donald G. Phinney ;
Zinaida S. Vexler .
Neurotherapeutics, 2021, 18 :1939-1952
[45]   Targeting Senescent Alveolar Epithelial Cells Using Engineered Mesenchymal Stem Cell-Derived Extracellular Vesicles To Treat Pulmonary Fibrosis [J].
Long, Yaoying ;
Yang, Bianlei ;
Lei, Qian ;
Gao, Fei ;
Chen, Li ;
Chen, Wenlan ;
Chen, Siyi ;
Ren, Wenxiang ;
Cao, Yulin ;
Xu, Liuyue ;
Wu, Di ;
Qu, Jiao ;
Li, He ;
Yu, Yali ;
Zhang, Anyuan ;
Wang, Shan ;
Chen, Weiqun ;
Wang, Hongxiang ;
Chen, Ting ;
Chen, Zhichao ;
Li, Qiubai .
ACS NANO, 2024, 18 (09) :7046-7063
[46]   Harnessing the therapeutic potential of mesenchymal stem/stromal cell-derived extracellular vesicles as a novel cell-free therapy for animal models of multiple sclerosis [J].
Jafarinia, Morteza ;
Farrokhi, Majid Reza ;
Vakili, Sina ;
Hosseini, Maryam ;
Azimzadeh, Maryam ;
Sabet, Babak ;
Shapoori, Shima ;
Iravanpour, Farideh ;
Oliaee, Razieh Tavakoli .
EXPERIMENTAL NEUROLOGY, 2024, 373
[47]   Preparation of Engineered Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells with Ultrasonication for Skin Rejuvenation [J].
Wang, Lixue ;
Abhange, Komal K. ;
Wen, Yi ;
Chen, Yundi ;
Xue, Fei ;
Wang, Guosheng ;
Tong, Jinlong ;
Zhu, Chuandong ;
He, Xia ;
Wan, Yuan .
ACS OMEGA, 2019, 4 (27) :22638-22645
[48]   Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment [J].
Lara-Barba, Eliana ;
Araya, Maria Jesus ;
Hill, Charlotte Nicole ;
Bustamante-Barrientos, Felipe A. ;
Ortloff, Alexander ;
Garcia, Cynthia ;
Galvez-Jiron, Felipe ;
Pradenas, Carolina ;
Luque-Campos, Noymar ;
Maita, Gabriela ;
Elizondo-Vega, Roberto ;
Djouad, Farida ;
Vega-Letter, Ana Maria ;
Luz-Crawford, Patricia .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[49]   Extracellular Vesicles (EVs) Derived from Mesenchymal Stem Cells (MSCs) as Adjuvants in the Treatment of Chronic Kidney Disease (CKD) [J].
Noda, Paloma ;
Francini, Ana L. R. ;
Teles, Flavio ;
Junior, Samuel J. ;
Fonseca, Fernando L. A. ;
Borges, Fernanda T. ;
Sobrinho, Adao C. ;
Taniwaki, Noemi ;
Noronha, Irene L. ;
Fanelli, Camilla .
CELLS, 2025, 14 (06)
[50]   DUAL MODIFICATION APPROACHES FOR AUGMENTING THE TARGETING EFFICIENCY OF SMALL EXTRACELLULAR VESICLES DERIVED FROM MESENCHYMAL STEM CELLS [J].
Mendiratta, M. ;
Mendiratta, M. ;
Sahoo, R. ;
Malhotra, N. ;
Mohanty, S. .
CYTOTHERAPY, 2024, 26 (06) :S82-S82