3D Human Body Shape and Pose Estimation from Depth Image

被引:1
作者
Liu, Lei
Wang, Kangkan [1 ]
Yang, Jian
机构
[1] Nanjing Univ Sci & Technol, PCA Lab, Key Lab Intelligent Percept & Syst High Dimens In, Minist Educ, Nanjing, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020 | 2020年 / 12305卷
关键词
Human shape and pose estimation; Deep learning; Weak supervision;
D O I
10.1007/978-3-030-60633-6_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses the problem of 3D human body shape and pose estimation from a single depth image. Most 3D human pose estimation methods based on deep learning utilize RGB images instead of depth images. Traditional optimization-based methods using depth images aim to establish point correspondences between the depth images and the template model. In this paper, we propose a novel method to estimate the 3D pose and shape of a human body from depth images. Specifically, based on the joints features and original depth features, we propose a spatial attention feature extractor to capture spatial local features of depth images and 3D joints by learning dynamic weights of the features. In addition, we generalize our method to real depth data through a weakly-supervised method. We conduct extensive experiments on SURREAL, Human3.6M, DFAUST, and real depth images of human bodies. The experimental results demonstrate that our 3D human pose estimation method can yield good performance.
引用
收藏
页码:410 / 421
页数:12
相关论文
共 23 条
[1]   Dynamic FAUST: Registering Human Bodies in Motion [J].
Bogo, Federica ;
Romero, Javier ;
Pons-Moll, Gerard ;
Black, Michael J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5573-5582
[2]   Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image [J].
Bogo, Federica ;
Kanazawa, Angjoo ;
Lassner, Christoph ;
Gehler, Peter ;
Romero, Javier ;
Black, Michael J. .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :561-578
[3]   Robust Non-rigid Motion Tracking and Surface Reconstruction Using L0 Regularization [J].
Guo, Kaiwen ;
Xu, Feng ;
Wang, Yangang ;
Liu, Yebin ;
Dai, Qionghai .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :3083-3091
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   Towards Accurate Marker-less Human Shape and Pose Estimation over Time [J].
Huang, Yinghao ;
Bogo, Federica ;
Lassner, Christoph ;
Kanazawa, Angjoo ;
Gehler, Peter, V ;
Romero, Javier ;
Akhter, Ijaz ;
Black, Michael J. .
PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, :421-430
[6]   Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments [J].
Ionescu, Catalin ;
Papava, Dragos ;
Olaru, Vlad ;
Sminchisescu, Cristian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (07) :1325-1339
[7]   A Multi-view RGB-D Approach for Human Pose Estimation in Operating Rooms [J].
Kadkhodamohammadi, Abdolrahim ;
Gangi, Afshin ;
de Mathelin, Michel ;
Padoy, Nicolas .
2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, :363-372
[8]   End-to-end Recovery of Human Shape and Pose [J].
Kanazawa, Angjoo ;
Black, Michael J. ;
Jacobs, David W. ;
Malik, Jitendra .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7122-7131
[9]   Neural 3D Mesh Renderer [J].
Kato, Hiroharu ;
Ushiku, Yoshitaka ;
Harada, Tatsuya .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3907-3916
[10]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001