Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology

被引:0
作者
Cao, Yanting [1 ,2 ,3 ,4 ]
Li, Jianghua [2 ,3 ,4 ]
Liu, Long [1 ,2 ,3 ,4 ]
Du, Guocheng [1 ,2 ,3 ,4 ]
Liu, Yanfeng [1 ,2 ,3 ,4 ]
机构
[1] Jiangnan Univ, Sch Biotechnol, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sci Ctr Future Foods, Wuxi 214122, Peoples R China
[3] Jiangnan Univ, Engn Res Ctr, Minist Educ Food Synthet Biotechnol, Wuxi 214122, Peoples R China
[4] Jiangnan Univ, Jiangsu Prov Engn Res Ctr Food Synthet Biotechnol, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Synthetic biology; Genetic heterogeneity; Non-genetic heterogeneity; Highly productive strains; Highly robust strains; Single-cell technologies; TO-CELL VARIATION; ESCHERICHIA-COLI; ADAPTIVE MUTATION; FUNCTIONAL ROLES; GENE-EXPRESSION; INFORMATION; ADDICTION; STABILITY; SELECTION; BACTERIA;
D O I
10.1016/j.synbio.2024.11.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic engineering-driven microbial cell factories have made great progress in the efficient bioproduction of biochemical and recombinant proteins. However, the low efficiency and robustness of microbial cell factories limit their industrial applications. Harnessing microbial heterogeneity contributes to solving this. In this review, the origins of microbial heterogeneity and its effects on biosynthesis are first summarized. Synthetic biology- driven tools and strategies that can be used to improve biosynthesis by increasing and reducing microbial heterogeneity are then systematically summarized. Next, novel single-cell technologies available for unraveling microbial heterogeneity and facilitating heterogeneity regulation are discussed. Furthermore, a combined workflow of increasing genetic heterogeneity in the strain-building step to help in screening highly productive strains- reducing heterogeneity in the production process to obtain highly robust strains (IHP-RHR) facilitated by single-cell technologies was proposed to obtain highly productive and robust strains by harnessing microbial heterogeneity. Finally, the prospects and future challenges are discussed.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 111 条
  • [91] RNA-driven genetic changes in bacteria and in human cells
    Shen, Ying
    Nandi, Pavan
    Taylor, Matthew B.
    Stuckey, Samantha
    Bhadsavle, Hershel P.
    Weiss, Bernard
    Storici, Francesca
    [J]. MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2011, 717 (1-2) : 91 - 98
  • [92] The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress
    Shor, Erika
    Fox, Catherine A.
    Broach, James R.
    [J]. PLOS GENETICS, 2013, 9 (08):
  • [93] Rapid prototyping of microbial cell factories via genome-scale engineering
    Si, Tong
    Xiao, Han
    Zhao, Huimin
    [J]. BIOTECHNOLOGY ADVANCES, 2015, 33 (07) : 1420 - 1432
  • [94] Evolution-guided engineering of small-molecule biosensors
    Snoek, Tim
    Chaberski, Evan K.
    Ambri, Francesca
    Kol, Stefan
    Bjorn, Sara P.
    Pang, Bo
    Barajas, Jesus F.
    Welner, Ditte H.
    Jensen, Michael K.
    Keasling, Jay D.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (01)
  • [95] Asymmetric Context-Dependent Mutation Patterns Revealed through Mutation-Accumulation Experiments
    Sung, Way
    Ackerman, Matthew S.
    Gout, Jean-Francois
    Miller, Samuel F.
    Williams, Emily
    Foster, Patricia L.
    Lynch, Michael
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2015, 32 (07) : 1672 - 1683
  • [96] Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes
    Tapsin, Sidika
    Sun, Miao
    Shen, Yang
    Zhang, Huibin
    Lim, Xin Ni
    Susanto, Teodorus Theo
    Yang, Siwy Ling
    Zeng, Gui Sheng
    Lee, Jasmine
    Lezhava, Alexander
    Ang, Ee Lui
    Zhang, Lian Hui
    Wang, Yue
    Zhao, Huimin
    Nagarajan, Niranjan
    Wan, Yue
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [97] Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria
    Taylor, George M.
    Hitchcock, Andrew
    Heap, John T.
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (21)
  • [98] Stabilized gene duplication enables long-term selection-free heterologous pathway expression
    Tyo, Keith E. J.
    Ajikumar, Parayil Kumaran
    Stephanopoulos, Gregory
    [J]. NATURE BIOTECHNOLOGY, 2009, 27 (08) : 760 - U115
  • [99] Genome-Wide Abolishment of Mobile Genetic Elements Using Genome Shuffling and CRISPR/Cas-Assisted MAGE Allows the Efficient Stabilization of a Bacterial Chassis
    Umenhoffer, Kinga
    Draskovits, Gabor
    Nyerges, Akos
    Karcagi, Ildiko
    Bogos, Balazs
    Timar, Edit
    Csoergo, Balint
    Herczeg, Robert
    Nagy, Istvan
    Feher, Tamas
    Pal, Csaba
    Posfai, Gyoergy
    [J]. ACS SYNTHETIC BIOLOGY, 2017, 6 (08): : 1471 - 1483
  • [100] Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications
    Umenhoffer, Kinga
    Feher, Tamas
    Baliko, Gabriella
    Ayaydin, Ferhan
    Posfai, Janos
    Blattner, Frederick R.
    Posfai, Gyoergy
    [J]. MICROBIAL CELL FACTORIES, 2010, 9