In-situ interface engineering of NVOPF nanosheets with cross-linked conductive networks for superior sodium storage

被引:1
作者
Luo, Xiaojun [1 ]
Liu, Qinxia [1 ]
Lei, Lei [1 ]
Xia, Wei [1 ]
Yin, Ya-Meng [1 ,2 ]
Wu, Xue-Qian [1 ,2 ]
Yang, Cai-Hong [1 ,2 ]
Chi, Ruan [2 ]
Li, Dong-Sheng [1 ,2 ]
机构
[1] China Three Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmet Crystalline & Energy Conver, Yichang 443002, Peoples R China
[2] Hubei Three Gorges Lab, Yichang 443007, Peoples R China
基金
中国国家自然科学基金;
关键词
NVOPF; Carbon nanotubes; Chemical bonds; Conductive interface; HIGH-PERFORMANCE CATHODE; HIGH-ENERGY; NANOPARTICLES; GRAPHENE;
D O I
10.1016/j.surfin.2025.106259
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na3V2O2(PO4)2F (NVOPFNVOPF) as a prospective candidate for sodium-ion battery cathodes, faces practical challenges for its inherently low electronic conductivity, which impedes fast reaction kinetics and diminishes its sodium storage efficiency. To address these limitations, we introduce an in-situ interface engineering strategy for NVOPF by integrating 1D hydroxylated carbon nanotubes (CNTs) onto the surface of NVOPF nanosheets. The CNTs are arranged in-situ in multiple directions and significantly enhance adhesion to the NVOPF nanosheets via [PO4]3--CNTs linkages, establishing a robust and conductive interface. This strategy effectively mitigates the aggregation of NVOPF nanosheets, ensuring optimized electronic contact and a persistent, efficient charge-transfer network within the composite. The resultant NVOPF-15%CNTs composite exhibits enhanced rate performance (88.01 mAh g-1 at 50 C) and excellent cyclability (retaining 82.4% capacity after 10,000 cycles at 50 C). Comprehensive experimental and theoretical analyses confirm that the designed conductive interface accelerates charge-transfer kinetics and preserves structural integrity. This study provides valuable insights into optimizing NVOPF cathode and suggests a versatile approach applicable to improving other cathode materials.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Improving electrochemical performance of Na3(VPO4)2O2F cathode materials for sodium ion batteries by constructing conductive scaffold [J].
Bi, Linnan ;
Miao, Zhuang ;
Li, Xiaoyan ;
Song, Zhicui ;
Zheng, Qiaoji ;
Lin, Dunmin .
ELECTROCHIMICA ACTA, 2020, 337
[2]   Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries [J].
Bianchini, Matteo ;
Xiao, Penghao ;
Wang, Yan ;
Ceder, Gerbrand .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[3]   A Practicable Li/Na-Ion Hybrid Full Battery Assembled by a High-Voltage Cathode and Commercial Graphite Anode: Superior Energy Storage Performance and Working Mechanism [J].
Guo, Jin-Zhi ;
Yang, Yang ;
Liu, Dao-Sheng ;
Wu, Xing-Long ;
Hou, Bao-Hua ;
Pang, Wei-Lin ;
Huang, Ke-Cheng ;
Zhang, Jing-Ping ;
Su, Zhong-Min .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[4]   Giant Magnetocaloric Effect in Magnets Down to the Monolayer Limit [J].
He, Weiwei ;
Yin, Yan ;
Gong, Qihua ;
Evans, Richard F. L. ;
Gutfleisch, Oliver ;
Xu, Bai-Xiang ;
Yi, Min ;
Guo, Wanlin .
SMALL, 2023, 19 (36)
[5]   Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries [J].
Hou, Yan ;
Chang, Kun ;
Wang, Zhenyu ;
Gu, Shuai ;
Liu, Qiong ;
Zhang, Junjun ;
Cheng, Hua ;
Zhang, Shenglin ;
Chang, Zhaorong ;
Lu, Zhouguang .
SCIENCE CHINA-MATERIALS, 2019, 62 (04) :474-486
[6]   Boosting sodium-ion battery performance using Na3(VO)2(PO4)2F microrods self-embedded in a 3D conductive interpenetrated framework [J].
Hu, Qiao ;
Han, Guangming ;
Liao, Jiaying ;
Yao, Jianfeng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 988
[7]   Eliminating Charge Transfer at Cathode-Electrolyte Interface for Ultrafast Kinetics in Na-Ion Batteries [J].
Huang, Xue ;
Sun, Haoxiang ;
Li, Xiangyi ;
Zhu, Wenhao ;
Chen, Lei ;
Ma, Tian ;
Ding, Shulin ;
Ma, Tao ;
Dong, Yang ;
Zhang, Kai ;
Cheng, Fangyi ;
Wei, Qiulong ;
Gao, Lijun ;
Zhao, Jianqing ;
Zhang, Wei ;
Chen, Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (43) :29391-29401
[8]   Tailoring P2/P3 Biphases of Layered NaxMnO2 by Co Substitution for High-Performance Sodium-Ion Battery [J].
Jiang, Na ;
Liu, Qiunan ;
Wang, Jiawei ;
Yang, Wanfeng ;
Ma, Wensheng ;
Zhang, Liqiang ;
Peng, Zhangquan ;
Zhang, Zhonghua .
SMALL, 2021, 17 (07)
[9]   Surface-controlled sodium-ion storage mechanism of Li4Ti5O12 anode [J].
Li, Junbin ;
Chang, Xiaoqing ;
Huang, Tingyi ;
Wang, Binhao ;
Zheng, Hongfei ;
Luo, Qing ;
Peng, Dong-Liang ;
Wei, Qiulong .
ENERGY STORAGE MATERIALS, 2023, 54 :724-731
[10]   pH-manipulated large-scale synthesis of Na3(VOPO4)2F at low temperature for practical application in sodium ion batteries [J].
Li, Lianjie ;
Fan, Junjie ;
Chen, Hao ;
Liu, Hui ;
Li, Qiulin ;
Xian, Changpeng ;
Wu, Jin ;
Qi, Yuruo ;
Xu, Maowen .
NEW JOURNAL OF CHEMISTRY, 2024, 48 (10) :4446-4455