Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 2-Ex vivo imaging: Added value and acquisition

被引:1
作者
Schilling, Kurt G. [1 ,2 ]
Grussu, Francesco [3 ,4 ]
Ianus, Andrada [5 ,6 ]
Hansen, Brian [7 ]
Howard, Amy F. D. [8 ,9 ]
Barrett, Rachel L. C. [10 ,11 ]
Aggarwal, Manisha [12 ]
Michielse, Stijn [13 ]
Nasrallah, Fatima [14 ]
Syeda, Warda [15 ]
Wang, Nian [16 ,17 ]
Veraart, Jelle [18 ]
Roebroeck, Alard [19 ]
Bagdasarian, Andrew F. [20 ,21 ]
Eichner, Cornelius [22 ]
Sepehrband, Farshid [23 ]
Zimmermann, Jan [24 ]
Soustelle, Lucas [25 ]
Bowman, Christien [26 ,27 ]
Tendler, Benjamin C. [28 ]
Hertanu, Andreea [29 ,30 ]
Jeurissen, Ben [31 ,32 ]
Verhoye, Marleen [26 ,27 ]
Frydman, Lucio [33 ]
van de Looij, Yohan [34 ]
Hike, David [20 ,21 ]
Dunn, Jeff F. [35 ,36 ,37 ]
Miller, Karla [9 ]
Landman, Bennett A. [38 ]
Shemesh, Noam [5 ]
Anderson, Adam [2 ,39 ]
Mckinnon, Emilie [40 ]
Farquharson, Shawna [41 ]
Dell'Acqua, Flavio [42 ]
Pierpaoli, Carlo [43 ]
Drobnjak, Ivana [44 ]
Leemans, Alexander [45 ]
Harkins, Kevin D. [1 ,2 ,46 ]
Descoteaux, Maxime [47 ,48 ]
Xu, Duan [49 ]
Huang, Hao [50 ,51 ]
Santin, Mathieu D. [52 ,53 ]
Grant, Samuel C. [20 ,21 ]
Obenaus, Andre [54 ,55 ]
Kim, Gene S. [56 ]
Wu, Dan [57 ]
Le Bihan, Denis [58 ,59 ]
Blackband, Stephen J. [60 ,61 ,62 ]
Ciobanu, Luisa [63 ]
Fieremans, Els [64 ]
机构
[1] Vanderbilt Univ, Med Ctr, Radiol & Radiol Sci, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37235 USA
[3] Vall dHebron Barcelona Hosp Campus, Vall dHebron Inst Oncol, Radi Grp, Barcelona, Spain
[4] Univ Coll London UCL, Fac Brain Sci, Queen Sq Inst Neurol, Queen Sq MS Ctr, London, England
[5] Champalimaud Fdn, Champalimaud Res, Lisbon, Portugal
[6] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[7] Aarhus Univ, Ctr Functionally Integrat Neurosci, Aarhus, Denmark
[8] Imperial Coll London, Dept Bioengn, London, England
[9] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Nuffield Dept Clin Neurosci, FMRIB, Oxford, England
[10] Kings Coll London, Dept Neuroimaging, Inst Psychiat Psychol & Neurosci, London, England
[11] Kings Coll London, Dept Forens & Neurodev Sci, Inst Psychiat Psychol & Neurosci, London, England
[12] Johns Hopkins Univ Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA
[13] Maastricht Univ, Sch Mental Hlth & Neurosci MHeNS, Dept Neurosurg, Med Ctr, Maastricht, Netherlands
[14] Univ Queensland, Queensland Brain Inst, Brisbane, Qld, Australia
[15] Univ Melbourne, Melbourne Neuropsychiat Ctr, Melbourne, Australia
[16] Indiana Univ, Dept Radiol & Imaging Sci, Indianapolis, IN USA
[17] Indiana Univ Sch Med, Stark Neurosci Res Inst, Indianapolis, IN 46202 USA
[18] NYU, Ctr Biomed Imaging, Grossman Sch Med, New York, NY USA
[19] Maastricht Univ, Fac Psychol & Neurosci, Maastricht, Netherlands
[20] Florida State Univ, Dept Chem & Biomed Engn, FAMU FSU Coll Engn, Tallahassee, FL USA
[21] Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL USA
[22] Max Planck Inst Human Cognit & Brain Sci, Dept Neuropsychol, Leipzig, Germany
[23] Univ Southern Calif, Keck Sch Med USC, USC Stevens Neuroimaging & Informat Inst, Los Angeles, CA USA
[24] Univ Minnesota, Ctr Magnet Resonance Res, Dept Neurosci, Minneapolis, MN USA
[25] Aix Marseille Univ, CNRS, CRMBM, Marseille, France
[26] Univ Antwerp, Fac Pharmaceut Biomed & Vet Sci, Bioimaging Lab, Antwerp, Belgium
[27] Univ Antwerp, NEURO Res Ctr Excellence, Antwerp, Belgium
[28] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Nuffield Dept Clin Neurosci, FMRIB, Oxford, England
[29] Lausanne Univ Hosp, Dept Radiol, Lausanne, Switzerland
[30] Univ Lausanne, Lausanne, Switzerland
[31] Univ Antwerp, Dept Phys, Imec Vis Lab, Antwerp, Belgium
[32] Univ Antwerp, Dept Phys, Lab Equilibrium Invest & Aerosp, Antwerp, Belgium
[33] Weizmann Inst Sci, Dept Chem & Biol Phys, Rehovot, Israel
[34] Univ Geneva, Sch Med, Div Child Dev & Growth, Dept Pediat, Geneva, Switzerland
[35] Univ Calgary, Cumming Sch Med, Dept Radiol, Calgary, AB, Canada
[36] Univ Calgary, Hotchkiss Brain Inst, Cumming Sch Med, Calgary, AB, Canada
[37] Univ Calgary, Alberta Childrens Hosp Res Inst, Cumming Sch Med, Calgary, AB, Canada
[38] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN USA
[39] Vanderbilt Univ, Med Ctr, Dept Radiol & Radiol Sci, Nashville, TN USA
[40] Med Univ South Carolina, Charleston, SC USA
[41] Univ Queensland, Natl Imaging Facil, Brisbane, Australia
[42] Kings Coll London, Dept Forens & Neurodev Sci, London, England
[43] NIBIB, Lab Quantitat Med Imaging, NIH, Bethesda, MD USA
[44] UCL, Dept Comp Sci, London, England
[45] Univ Med Ctr Utrecht, Image Sci Inst, PROVIDI Lab, Utrecht, Netherlands
[46] Vanderbilt Univ, Biomed Engn, Nashville, TN USA
[47] Univ Sherbrooke, Comp Sci Dept, Sherbrooke, PQ, Canada
[48] Imeka Solut, Sherbrooke, PQ, Canada
[49] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA USA
[50] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
acquisition; best practices; diffusion MRI; diffusion tensor; ex vivo; microstructure; open science; preclinical; processing; tractography; MAGNETIC-RESONANCE MICROSCOPY; POSTMORTEM HUMAN BRAINS; WAXHOLM SPACE ATLAS; WATER DIFFUSION; AXON DIAMETER; WHITE-MATTER; MOUSE-BRAIN; IN-VIVO; TENSOR MICROSCOPY; T-2; RELAXATION;
D O I
10.1002/mrm.30435
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The value of preclinical diffusion MRI (dMRI) is substantial. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages including higher SNR and spatial resolution compared to in vivo studies, and enabling more advanced diffusion contrasts for improved microstructure and connectivity characterization. Another major advantage of ex vivo dMRI is the direct comparison with histological data, as a crucial methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work represents "Part 2" of a three-part series of recommendations and considerations for preclinical dMRI. We describe best practices for dMRI of ex vivo tissue, with a focus on the value that ex vivo imaging adds to the field of dMRI and considerations in ex vivo image acquisition. We first give general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in specimens and models and discuss why some may be more or less appropriate for different studies. We then give guidelines for ex vivo protocols, including tissue fixation, sample preparation, and MR scanning. In each section, we attempt to provide guidelines and recommendations, but also highlight areas for which no guidelines exist (and why), and where future work should lie. An overarching goal herein is to enhance the rigor and reproducibility of ex vivo dMRI acquisitions and analyses, and thereby advance biomedical knowledge.
引用
收藏
页码:2535 / 2560
页数:26
相关论文
共 176 条
[1]  
Jelescu I.O., Grussu F., Ianus A., Et al., Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 – In vivo small-animal imaging, Magn Reson Med, 93, pp. 2507-2534, (2025)
[2]  
Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3 — Ex vivo imaging: data processing, comparisons with microscopy, and tractography, Magn Reson Med., 93, pp. 2561-2582, (2025)
[3]  
Alexander D.C., Hubbard P.L., Hall M.G., Et al., Orientationally invariant indices of axon diameter and density from diffusion MRI, NeuroImage, 52, pp. 1374-1389, (2010)
[4]  
Sepehrband F., Alexander D.C., Kurniawan N.D., Reutens D.C., Yang Z., Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI, NMR Biomed, 29, pp. 293-308, (2016)
[5]  
Budde M.D., Frank J.A., Examining brain microstructure using structure tensor analysis of histological sections, NeuroImage, 63, pp. 1-10, (2012)
[6]  
Aggarwal M., Zhang J., Pletnikova O., Crain B., Troncoso J., Mori S., Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: a case study at 11.7 T, NeuroImage, 74, pp. 117-127, (2013)
[7]  
Liu C., Ye F.Q., Newman J.D., Et al., A resource for the detailed 3D mapping of white matter pathways in the marmoset brain, Nat Neurosci, 23, pp. 271-280, (2020)
[8]  
Hansen B., Flint J.J., Heon-Lee C., Et al., Diffusion tensor microscopy in human nervous tissue with quantitative correlation based on direct histological comparison, NeuroImage, 57, pp. 1458-1465, (2011)
[9]  
Grussu F., Schneider T., Zhang H., Alexander D.C., Wheeler-Kingshott C.A.M., Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo, NeuroImage, 111, pp. 590-601, (2015)
[10]  
Kelm N.D., West K.L., Carson R.P., Gochberg D.F., Ess K.C., Does M.D., Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains, NeuroImage, 124, pp. 612-626, (2016)