Multi-walled carbon nanotubes decorated CdO/Co3O4 hexagonal nanoplates: Unveiling their potential in hybrid supercapacitor

被引:0
作者
Bhagwan, Jai [1 ]
Han, Jeong In [1 ]
机构
[1] Dongguk Univ Seoul, Dept Chem & Biochem Engn, Seoul 04620, South Korea
关键词
Aqueous hybrid supercapacitor; Energy and power densities; HIGH-PERFORMANCE; FACILE SYNTHESIS; HYDROTHERMAL SYNTHESIS; ZNCO2O4; MICROSPHERES; NANOSHEETS; NANOWIRES; ELECTRODE; NANOPARTICLES; FOAM;
D O I
10.1016/j.apsusc.2025.162689
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple synthesis process for hybrid transition metal oxides is a crucial way for their application in energy storage system. In this work, multi-walled carbon nanotubes (MWCNTs) decorated CdO/Co3O4 hexagonal like nanoplates are prepared by fast emerging co-precipitation process. Further, CdO/Co3O4/MWCNT composite is used for energy storage performance and, specific capacity of 214.5 mAh g- 1 is obtained at 1 A g- 1. The capacity of CdO/Co3O4/MWCNT is found to be higher from the capacities of CdO (40.25 mAh g- 1), Co3O4 (100.5 mAh g- 1) and CdO/Co3O4 (171.63 mAh g- 1). Further, hybrid supercapacitor (HSC) is designed by CdO/Co3O4/ MWCNT (positive electrode) and activated carbon (AC) (negative electrode). The CdO/Co3O4/MWCNT//AC delivers the high energy density of 37 W h kg- 1 with the power density of 750 W kg- 1. In addition, to confirm the electronic applicability for portable appliances, four green color light-emitting diodes (LEDs), kitchen timer and toy motor fan are operated separately by two CdO/Co3O4/MWCNT//AC hybrid supercapacitor connected in series.
引用
收藏
页数:14
相关论文
共 68 条
  • [1] Gonzalez A., Goikolea E., Barrena J.A., Mysyk R., Review on supercapacitors : technologies and materials, Renew. Sustain. Energy Rev., 58, pp. 1189-1206, (2016)
  • [2] Zheng S., Xue H., Pang H., Supercapacitors based on metal coordination materials, Coord. Chem. Rev., 373, pp. 2-21, (2018)
  • [3] Wang Q., Luo Y., Hou R., Zaman S., Qi K., Liu H., Park H.S., Xia B.Y., Redox tuning in crystalline and electronic structure of bimetal–organic frameworks derived cobalt/nickel boride/sulfide for boosted faradaic capacitance, Adv. Mater., 31, pp. 1905744-1905751, (2019)
  • [4] Xiong G., He P., Lyu Z., Chen T., Huang B., Chen L., Fisher T.S., Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors, Nat. Commun., 9, pp. 790-801, (2018)
  • [5] Rosaiah P., Maaouni N., Goddati M., Lee J., Sambasivam S., Karim M.R., Alnaser I.A., Reddy V.R.M., Kim W.K., Surface design and engineering of ZnMn<sub>2</sub>O<sub>4</sub>/RGO composites for highly stable supercapacitor devices, J. Energy Storage, 76, pp. 109636-109645, (2024)
  • [6] Li H.B., Yu M.H., Wang F.X., Liu P., Liang Y., Xiao J., Wang C.X., Tong Y.X., Yang G.W., Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Commun., 4, pp. 1894-1900, (2013)
  • [7] Mai L.-Q., Yang F., Zhao Y.-L., Xu X., Xu L., Luo Y.-Z., Hierarchical MnMoO<sub>4</sub>/CoMoO<sub>4</sub> heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun., 2, pp. 381-385, (2011)
  • [8] Wu Z.-S., Parvez K., Feng X., Mu K., Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nat. Commun., 4, pp. 2487-2494, (2013)
  • [9] Ye J., Li Z., Dai Z., Zhang Z., Guo M., Wang X., Facile synthesis of hierarchical CuO nanoflower for supercapacitor electrodes, J. Electron. Mater., 45, pp. 4237-4245, (2016)
  • [10] Wang H., Chen H., Hou X., Ye H., Guo Z., Chen Z., Jin Y., Du Y., Ren P., MnO decorated biomass derived carbon based on hyperaccumulative characteristics as advanced electrode materials for high-performance supercapacitors, Diam. Relat. Mater., 136, pp. 109888-109895, (2023)