Discrete group actions on 3-manifolds and embeddable Cayley complexes

被引:0
作者
Georgakopoulos, Agelos [1 ]
Kontogeorgiou, George [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, England
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2025年
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
3-manifold; Cayley complex; discrete action; Cantor sphere; Cannon's conjecture; FINITE-GROUP ACTIONS; CONVERGENCE GROUPS; MANIFOLDS;
D O I
10.4153/S0008414X24001081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a group $\Gamma $ admits a discrete, topological (equivalently, smooth) action on some simply connected 3-manifold if and only if $\Gamma $ has a Cayley complex embeddable-with certain natural restrictions-in one of the following four 3-manifolds: (i) $\mathbb {S}<^>3$ , (ii) $\mathbb {R}<^>3$ , (iii) $\mathbb {S}<^>2 \times \mathbb R$ , and (iv) the complement of a tame Cantor set in $\mathbb {S}<^>3$ . The fact that these are the only simply connected 3-manifolds that allow such actions is a consequence of the Thurston-Perelman geometrization theorem.
引用
收藏
页数:26
相关论文
共 48 条
[1]  
Agol I., How wild can an open topological 3-manifold be if it has a compact quotient?
[2]  
Agol I, 2013, DOC MATH, V18, P1045
[3]  
[Anonymous], 1988, Revia Matemtica Iberoamericana
[4]  
Babai L., 1977, J. Graph Theory, V1, P125, DOI [10.1002/jgt.3190010207, DOI 10.1002/JGT.3190010207]
[5]  
Babai L., 1995, Handbook of Combinatorics, P1447, DOI DOI 10.5555/233228.233236
[6]   AN ALTERNATIVE PROOF THAT 3-MANIFOLDS CAN BE TRIANGULATED [J].
BING, RH .
ANNALS OF MATHEMATICS, 1959, 69 (01) :37-65
[7]   Geometrization of 3-dimensional orbifolds [J].
Boileau, M ;
Leeb, B ;
Porti, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :195-290
[8]  
Boileau M., 2018, Winter Braids Lecture Notes, V5, P1
[9]   Notes on Maskit's Planarity Theorem [J].
Bowditch, Brian H. .
ENSEIGNEMENT MATHEMATIQUE, 2022, 68 (1-2) :1-24
[10]  
Brown M., 1960, B AM MATH SOC, V66, P74, DOI [DOI 10.1090/S0002-9904-1960-10400-4, 10.1090/S0002-9904-1960-10400-4]