Unveiling the Reactivity of Li1+x Al x Ti2-x (PO4)3 with Lithium Salts to Reduce Its Sintering Temperature

被引:0
作者
Guilleux, Morgan [1 ]
Gervais, Christel [1 ]
Diogo, Cristina Coelho [2 ]
Laberty-Robert, Christel [1 ,3 ]
Perez, Arnaud J. [1 ,3 ]
机构
[1] Sorbonne Univ, CNRS, Lab Chim Matie`re Condenseee Paris LCMCP, F-75005 Paris, France
[2] Sorbonne Univ, Federat Chim Mat Paris Ctr FCMAT, CNRS, FR 2482, F-75005 Paris, France
[3] Re?seau Stockage Electrochim Energie RS2E, FR 3459, F-80039 Amiens, France
来源
ACS APPLIED ENERGY MATERIALS | 2025年 / 8卷 / 02期
关键词
solid electrolyte; ionic conductor; ceramic; sintering aid; LATP; chemical reactivity; IONIC-CONDUCTIVITY; NEUTRON-DIFFRACTION; SOLID ELECTROLYTES; GLASS-CERAMICS; LITI2(PO4)(3); CONDUCTORS; NMR; MICROSTRUCTURE; OPTIMIZATION; LITIOPO4;
D O I
10.1021/acsaem.4c02668
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NaSICON-type materials, such as Li1.3Al0.3Ti1.7(PO4)3 (LATP), are considered promising solid electrolytes due to their good total ionic conductivity of 1 x 10-4 S cm-1 at room temperature and their stability at high potentials (4.1 V vs Li/Li+). However, decreasing their densification temperature is crucial for their integration into all-solid-state batteries (ASSBs). The minimum required heat treatment temperature for densification of LATP is 900 degrees C, which is incompatible with its integration in the composite electrode of ASSBs due to reactivity with the positive electrode material (cathode). To lower this temperature, lithium salts are often proposed as sintering aids to promote liquid-phase sintering. However, the systematic formation of impurities, such as LiTiOPO4 and Li4P2O7, suggests that chemical reactivity plays a significant role in LATP densification. In this work, the chemical reactivity mechanism of lithium salts with LATP during densification and sintering was investigated. Various characterization techniques, including in situ and ex situ X-ray diffraction, TGA-DTA-MS, DSC, ex situ Raman and solid-state NMR spectroscopy (7Li, 27Al, and 31P), were employed to elucidate the mechanism. The formation of intermediate decomposition products Li3PO4 and TiO2 is identified for the first time via the reactivity of the lithium salt with LATP prior to the melting temperature of the salt. These intermediates subsequently react with LATP at a higher temperature, resulting in the formation of final impurities LiTiOPO4 and Li4P2O7. This unified mechanism provides important insights on the enhanced densification of LATP at lower temperatures with the use of Li salt sintering aids.
引用
收藏
页码:1167 / 1178
页数:12
相关论文
共 50 条
  • [41] Recent advances in Li1+xAlxTi2-x(PO4)3 solid-state electrolyte for safe lithium batteries
    Xiao, Wei
    Wang, Jingyu
    Fan, Linlin
    Zhang, Jiujun
    Li, Xifei
    ENERGY STORAGE MATERIALS, 2019, 19 : 379 - 400
  • [42] Phase transformations and cation mobility in Li3-2x Nb x In2-x (PO4)3 complex phosphates
    Shaikhlislamova, A. R.
    Stenina, I. A.
    Zhuravlev, N. A.
    Arkhangel'skii, I. V.
    Rebrov, A. I.
    Yaroslavtsev, A. B.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2009, 54 (04) : 500 - 504
  • [43] Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7(PO4)3 Ceramics
    Waetzig, Katja
    Heubner, Christian
    Kusnezoff, Mihails
    CRYSTALS, 2020, 10 (05):
  • [44] Properties of Li1.3Al0.3Ti1.7(PO4)3 Lithium-Conducting Ceramics Synthesized by Spark Plasma Sintering
    Kunshina, G. B.
    Shichalin, O. O.
    Belov, A. A.
    Papynov, E. K.
    Bocharova, I. V.
    Shcherbina, O. B.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2023, 59 (03) : 173 - 181
  • [45] Fabrication of Li1+xAlxGe2-x(PO4)3 thin films by sputtering for solid electrolytes
    Mousavi, T.
    Chen, X.
    Doerrer, C.
    Jagger, B.
    Speller, S. C.
    Grovenor, C. R. M.
    SOLID STATE IONICS, 2020, 354
  • [46] Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2-x(PO4)3:: impedance, X-ray and NMR studies
    Best, AS
    Forsyth, M
    MacFarlane, DR
    SOLID STATE IONICS, 2000, 136 : 339 - 344
  • [47] Effect of calcination conditions on lithium conductivity in Li1.3Ti1.7Al0.3(PO4)3 prepared by sol-gel route
    Schell, K. G.
    Bucharsky, E. C.
    Lemke, F.
    Hoffmann, M. J.
    IONICS, 2017, 23 (04) : 821 - 827
  • [48] Structure and ion transport of lithium-rich Li1+xAlxTi2-x(PO4)3 with 0.3 < x < 0.5: A combined computational and experimental study
    Case, David
    McSloya, Adam J.
    Sharpe, Ryan
    Yeandel, Stephen R.
    Bartlett, Thomas
    Cookson, James
    Dashjav, Enkhtsetseg
    Tietz, Frank
    Kumarb, C. M. Naveen
    Goddard, Pooja
    SOLID STATE IONICS, 2020, 346
  • [49] Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2-x(PO4)3 NASICON-type materials
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (20) : 8464 - 8476
  • [50] A microcontact impedance study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0 ≤ x ≤ 0.5) single crystals
    Rettenwander, D.
    Welzl, A.
    Pristat, S.
    Tietz, F.
    Taibl, S.
    Redhammer, G. J.
    Fleig, J.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (04) : 1506 - 1513