Theoretical investigation of the thermal conductivity of Ga2O3 polymorphs

被引:2
作者
Safieddine, Fatima [1 ,2 ]
Hassan, Fouad El Haj [1 ,3 ]
Kazan, Michel [2 ]
机构
[1] Lebanese Univ, Platform Res & Anal Environm Sci PRASE DSST, Campus Raf Hariri, Beirut, Lebanon
[2] Amer Univ Beirut, Dept Phys, POB 11-0236,Riad El Solh, Beirut 11072020, Lebanon
[3] Al Maaref Univ, Basic & Appl Sci Res Ctr, Airport Ave, Beirut, Lebanon
关键词
Thermal conductivity; Thermoelectric materials; Phonons; First principles;
D O I
10.1016/j.ssc.2024.115715
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Gallium oxide (Ga2O3) is a promising thermal preserving and heat-insulating material; understanding the thermal properties is important to improve its performance in technological applications. The thermal conductivities of Ga2O3 polymorphs labeled as alpha, beta , delta , and epsilon are computed via the Boltzmann phonon transport equation (BTE) employing first-principles techniques. The lattice thermal conductivity tensor k of Ga2O3 for temperatures ranging from 50 K to 1000 K is derived using the second and third-order interatomic force constants (IFCs) for the potential based on a generalized gradient approximation (GGA), as well as the phonon dispersion relation, projected density of states (PDOS), and phonon group velocities. The results agree with the observed experimental values of rhombohedral polymorph beta-Ga 2 O 3 and with the previously calculated results of the other phases. At room temperature, the predicted thermal conductivity of the delta-Ga 2 O 3 phase is 15.6 W/(m center dot K). By breaking down k into mode contributions, it is projected that the optical phonons contribute significantly to the lattice thermal conductivity because of a peculiar phonon dispersion relation.
引用
收藏
页数:8
相关论文
共 30 条
  • [11] Thermal conductivity of GaN
    Kamatagi, M. D.
    Sankeshwar, N. S.
    Mulimani, B. G.
    [J]. DIAMOND AND RELATED MATERIALS, 2007, 16 (01) : 98 - 106
  • [12] ShengBTE: A solver of the Boltzmann transport equation for phonons
    Li, Wu
    Carrete, Jesus
    Katcho, Nebil A.
    Mingo, Natalio
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (06) : 1747 - 1758
  • [13] Equation of state of gallium oxide to 70 GPa: Comparison of quasihydrostatic and nonhydrostatic compression
    Lipinska-Kalita, Kristina E.
    Kalita, Patricia E.
    Hemmers, Oliver A.
    Hartmann, Thomas
    [J]. PHYSICAL REVIEW B, 2008, 77 (09)
  • [14] Electronic, Thermal, and Thermoelectric Transport Properties of ?-Ga2O3 from First Principles
    Liu, Qingsong
    Chen, Zimin
    Zhou, Xianzhong
    [J]. ACS OMEGA, 2022, 7 (14): : 11643 - 11653
  • [15] Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: Impact on the mobility and breakdown field
    Mengle, K. A.
    Kioupakis, E.
    [J]. AIP ADVANCES, 2019, 9 (01):
  • [16] Nye J.F., 1985, Properties of crystals
  • [17] Evaluation of anisotropic thermal conductivity for unidirectional FRP in laser machining
    Pan, CT
    Hocheng, H
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2001, 32 (11) : 1657 - 1667
  • [18] Lattice thermal conductivity of SiC nanowires
    Papanikolaou, N.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (13)
  • [19] Pearton S, 2019, METAL OXIDES, P1
  • [20] Mechanical properties of g-GaN: a first principles study
    Peng, Qing
    Liang, Chao
    Ji, Wei
    De, Suvranu
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 113 (02): : 483 - 490