Theoretical investigation of the thermal conductivity of Ga2O3 polymorphs

被引:2
作者
Safieddine, Fatima [1 ,2 ]
Hassan, Fouad El Haj [1 ,3 ]
Kazan, Michel [2 ]
机构
[1] Lebanese Univ, Platform Res & Anal Environm Sci PRASE DSST, Campus Raf Hariri, Beirut, Lebanon
[2] Amer Univ Beirut, Dept Phys, POB 11-0236,Riad El Solh, Beirut 11072020, Lebanon
[3] Al Maaref Univ, Basic & Appl Sci Res Ctr, Airport Ave, Beirut, Lebanon
关键词
Thermal conductivity; Thermoelectric materials; Phonons; First principles;
D O I
10.1016/j.ssc.2024.115715
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Gallium oxide (Ga2O3) is a promising thermal preserving and heat-insulating material; understanding the thermal properties is important to improve its performance in technological applications. The thermal conductivities of Ga2O3 polymorphs labeled as alpha, beta , delta , and epsilon are computed via the Boltzmann phonon transport equation (BTE) employing first-principles techniques. The lattice thermal conductivity tensor k of Ga2O3 for temperatures ranging from 50 K to 1000 K is derived using the second and third-order interatomic force constants (IFCs) for the potential based on a generalized gradient approximation (GGA), as well as the phonon dispersion relation, projected density of states (PDOS), and phonon group velocities. The results agree with the observed experimental values of rhombohedral polymorph beta-Ga 2 O 3 and with the previously calculated results of the other phases. At room temperature, the predicted thermal conductivity of the delta-Ga 2 O 3 phase is 15.6 W/(m center dot K). By breaking down k into mode contributions, it is projected that the optical phonons contribute significantly to the lattice thermal conductivity because of a peculiar phonon dispersion relation.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] Franco Júnior A., 2004, Cerâmica, V50, P247
  • [2] Furthmller J., 2016, Phys. Rev. B, V93
  • [3] QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
    Giannozzi, Paolo
    Baroni, Stefano
    Bonini, Nicola
    Calandra, Matteo
    Car, Roberto
    Cavazzoni, Carlo
    Ceresoli, Davide
    Chiarotti, Guido L.
    Cococcioni, Matteo
    Dabo, Ismaila
    Dal Corso, Andrea
    de Gironcoli, Stefano
    Fabris, Stefano
    Fratesi, Guido
    Gebauer, Ralph
    Gerstmann, Uwe
    Gougoussis, Christos
    Kokalj, Anton
    Lazzeri, Michele
    Martin-Samos, Layla
    Marzari, Nicola
    Mauri, Francesco
    Mazzarello, Riccardo
    Paolini, Stefano
    Pasquarello, Alfredo
    Paulatto, Lorenzo
    Sbraccia, Carlo
    Scandolo, Sandro
    Sclauzero, Gabriele
    Seitsonen, Ari P.
    Smogunov, Alexander
    Umari, Paolo
    Wentzcovitch, Renata M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
  • [4] ADIABATIC DENSITY-FUNCTIONAL PERTURBATION-THEORY
    GONZE, X
    [J]. PHYSICAL REVIEW A, 1995, 52 (02): : 1096 - 1114
  • [5] Review of Ga2O3-based optoelectronic devices
    Guo, D.
    Guo, Q.
    Chen, Z.
    Wu, Z.
    Li, P.
    Tang, W.
    [J]. MATERIALS TODAY PHYSICS, 2019, 11
  • [6] Anisotropic thermal conductivity in single crystal β-gallium oxide
    Guo, Zhi
    Verma, Amit
    Wu, Xufei
    Sun, Fangyuan
    Hickman, Austin
    Masui, Takekazu
    Kuramata, Akito
    Higashiwaki, Masataka
    Jena, Debdeep
    Luo, Tengfei
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (11)
  • [7] Higashiwaki M., 2020, Springer Mater. Sci., V293, P563
  • [8] Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates
    Higashiwaki, Masataka
    Sasaki, Kohei
    Kuramata, Akito
    Masui, Takekazu
    Yamakoshi, Shigenobu
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (01)
  • [9] Gallium Oxide Nanostructures: A Review of Synthesis, Properties and Applications
    Jamwal, Nishant Singh
    Kiani, Amirkianoosh
    [J]. NANOMATERIALS, 2022, 12 (12)
  • [10] Thermal conductivity of GaN crystals in 4.2-300 K range
    Jezowski, A
    Danilchenko, BA
    Bockowski, M
    Grzegory, I
    Krukowski, S
    Suski, T
    Paszkiewicz, T
    [J]. SOLID STATE COMMUNICATIONS, 2003, 128 (2-3) : 69 - 73