Pore-scale study of coupled charge, gas, and liquid water transport in the catalyst layer of PEM fuel cells

被引:0
|
作者
Dou, Shaojun [1 ]
Hao, Liang [1 ]
Wang, Yuanhui [2 ]
Wang, Qianqian [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai Key Lab Multiphase Flow & Heat Transfer P, Shanghai 200093, Peoples R China
[2] Yanshan Univ, Sch Vehicle & Energy, Qinhuangdao 066004, Peoples R China
基金
上海市自然科学基金;
关键词
Polymer electrolyte membrane fuel cell; Liquid water; Pore-scale model; Catalyst layer; REACTIVE TRANSPORT; PERFORMANCE; MODEL; RECONSTRUCTION; SIMULATIONS; TEMPERATURE; RESISTANCE; THICKNESS; POROSITY; IMPACT;
D O I
10.1016/j.fuel.2024.133141
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Understanding the catalyst layer (CL) structure-process-performance relationship is essential for optimizing proton-exchange membrane fuel cells. This study stochastically reconstructs a high-resolution porous CL with a full thickness of 8 mu m. The liquid water distribution within CL is simulated by a capillary condensation model, and a pore-scale model coupling oxygen and proton transport with electrochemical reaction is developed to investigate the CL structure-performance relationship under different operating conditions. Results indicate that CL exhibits better performance at higher humidities, up to the flooding threshold at the water saturation of 0.41, as the benefits of increased electrochemical surface area, enhanced proton conductivity, and improved oxygen permeability through the ionomer film significantly outweigh the increased transport resistances through both the pores and the water film. Under the flooding condition at water saturation of 0.41, CL performance starts to decline due to the sharply increased pore resistance. Proper perforation of CL is suggested to alleviate the pore resistance in flooded electrodes. Additionally, reducing the Pt-to-C mass ratio is found to achieve better Pt dispersion in low Pt-loaded electrodes, thereby lowering the local oxygen resistance, and the bilayer CL design with higher Pt content on the membrane side is shown to further mitigate the performance degradation.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Pore-scale Investigation of Water Freezing in Gas Diffusion Layer for Proton Exchange Membrane Fuel Cell
    Xu P.
    Xu S.
    Tang J.
    Gao Y.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (12): : 1791 - 1800
  • [32] Reconstruction and Effective Transport Properties of the Catalyst Layer in PEM Fuel Cells
    Kim, Seung Hyun
    Pitsch, Heinz
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (06) : B673 - B681
  • [33] Pore-scale numerical study of multiphase reactive transport processes in cathode catalyst layers of proton exchange membrane fuel cells
    Chen, Li
    Kang, Qinjun
    Tao, Wenquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (24) : 13283 - 13297
  • [34] Modeling of local gas transport in catalyst layers of PEM fuel cells
    Mashio, Tetsuya
    Iden, Hiroshi
    Ohma, Atsushi
    Tokumasu, Takashi
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 790 : 27 - 39
  • [35] Water flow in the gas diffusion layer of PEM fuel cells
    Benziger, J
    Nehlsen, J
    Blackwell, D
    Brennan, T
    Itescu, J
    JOURNAL OF MEMBRANE SCIENCE, 2005, 261 (1-2) : 98 - 106
  • [36] Pore-scale study of liquid water transport in gas diffusion layers with in-plane non-uniform distributed pore size of polymer electrolyte membrane fuel cell
    Lai, Tao
    Qu, Zhiguo
    Zhang, Jianfei
    APPLIED ENERGY, 2025, 379
  • [37] PORE-SCALE SIMULATION OF GAS DIFFUSION LAYER TRANSPORT CHARACTERICS BASED ON XCT
    Zhang H.
    Zhan Z.
    Chen B.
    Sui P.
    Pan M.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 99 - 105
  • [38] EFFECT OF VIBRATION ON THE LIQUID WATER TRANSPORT OF PEM FUEL CELLS
    Breziner, Luis
    Strahs, Peter
    Hutapea, Parsaoran
    IMECE2009, VOL 6, 2010, : 17 - 22
  • [39] Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells
    Salomov, Uktam R.
    Chiavazzo, Eliodoro
    Asinari, Pietro
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (02) : 393 - 411
  • [40] Homogenization of a Catalyst Layer Model for Periodically Distributed Pore Geometries in PEM Fuel Cells
    Schmuck, Markus
    Berg, Peter
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2013, Oxford University Press (01) : 57 - 78