Combining observational and experimental data for causal inference considering data privacy
被引:0
|
作者:
Mann, Charlotte Z.
论文数: 0引用数: 0
h-index: 0
机构:
Calif Polytech State Univ San Luis Obispo, Stat Dept, San Luis Obispo, CA 93407 USACalif Polytech State Univ San Luis Obispo, Stat Dept, San Luis Obispo, CA 93407 USA
Mann, Charlotte Z.
[1
]
Sales, Adam C.
论文数: 0引用数: 0
h-index: 0
机构:
Worcester Polytech Inst, Math Sci, Worcester, MA USACalif Polytech State Univ San Luis Obispo, Stat Dept, San Luis Obispo, CA 93407 USA
Sales, Adam C.
[2
]
Gagnon-Bartsch, Johann A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Stat, Ann Arbor, MI USACalif Polytech State Univ San Luis Obispo, Stat Dept, San Luis Obispo, CA 93407 USA
Gagnon-Bartsch, Johann A.
[3
]
机构:
[1] Calif Polytech State Univ San Luis Obispo, Stat Dept, San Luis Obispo, CA 93407 USA
[2] Worcester Polytech Inst, Math Sci, Worcester, MA USA
data integration;
statistical disclosure control;
differential privacy;
D O I:
10.1515/jci-2022-0081
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational datasets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive information might be tolerable to organizations that house confidential data. In these cases, organizations can employ data privacy techniques, which decrease disclosure risk, potentially at the expense of data utility. In this study, we explore disclosure limiting transformations of observational data, which can be combined with experimental data to estimate the sample and population average treatment effects. We consider leveraging observational data to improve generalizability of treatment effect estimates, when a randomized controlled trial (RCT) is not representative of the population of interest, and to increase precision of treatment effect estimates. Through simulation studies, we illustrate the trade-off between privacy and utility when employing different disclosure limiting transformations. We find that leveraging transformed observational data in treatment effect estimation can still improve estimation over only using data from an RCT.
机构:
Liverpool John Moores Univ, Data Sci Res Ctr, Liverpool, EnglandLiverpool John Moores Univ, Data Sci Res Ctr, Liverpool, England
Olier, Ivan
Zhan, Yiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Inst Environm Med, Stockholm, SwedenLiverpool John Moores Univ, Data Sci Res Ctr, Liverpool, England
Zhan, Yiqiang
Liang, Xiaoyu
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Coll Human Med, Dept Epidemiol & Biostat, E Lansing, MI 48824 USALiverpool John Moores Univ, Data Sci Res Ctr, Liverpool, England
Liang, Xiaoyu
Volovici, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Erasmus MC, Ctr Med Decis Making, Dept Neurosurg, Rotterdam, NetherlandsLiverpool John Moores Univ, Data Sci Res Ctr, Liverpool, England
机构:
Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY USA
Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, 110 8th St, Troy, NY 12180 USARensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY USA
Yang, Shu
Bequette, B. Wayne
论文数: 0引用数: 0
h-index: 0
机构:
Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY USARensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY USA