Analysis of the Mechanism of Agglomeration during Wet Ball Milling by Using DEM-CFD Simulation

被引:0
作者
Kushimoto, Kizuku [1 ]
Kondo, Akira [2 ]
Kozawa, Takahiro [3 ]
Naito, Makio [4 ]
Kano, Junya [1 ]
机构
[1] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, 2-1-1 Katahira, Sendai 9808577, Japan
[2] Toyo Tanso Co Ltd, 5-7-12 Takeshima,Nishiyodogawa Ku, Osaka 5550011, Japan
[3] Osaka Univ, Joining & Welding Res Inst, 11-1 Mihogaoka, Osaka, Ibaraki 5670047, Japan
[4] Osaka Univ, 11-1 Mihogaoka, Osaka, Ibaraki 5670047, Japan
基金
日本科学技术振兴机构;
关键词
Wet ball mill; DEM-CFD; Simulation; Particle; Agglomeration; MODEL;
D O I
10.1080/0371750X.2025.2472904
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A simulation coupling Discrete Element Method (DEM) with Computational Fluid Dynamics (CFD) was conducted in order to analyze the mechanism of agglomeration during wet ball milling. From the simulation, although the volume of the agglomerates decreased with increasing the interparticle repulsive force, the particles agglomerated even when the repulsive force acted between the particles. In addition, the volume of the agglomerates increased or converged to a certain volume as the balls repeatedly approached, collided, and separated from each other. These tendencies of the simulated agglomeration behaviour are consistent with the features of the agglomeration that were reported by the previous experiments. This indicated that the simulation represented the particle behaviour when the agglomeration occurs during wet ball milling. Furthermore, the simulation analysis suggested that the agglomeration during wet ball milling occurs when the liquid flow during the balls separation compress the particles and the compression force exceeds the potential of the repulsive force between the particles.
引用
收藏
页码:42 / 48
页数:7
相关论文
共 29 条
  • [1] Wang Y., Forssberg E., KONA Powder Part. J, 13, pp. 67-77, (1995)
  • [2] Yamamoto Y., Soda R., Kano J., Saito F., Int. J. Miner. Process, 114-117, pp. 93-99, (2012)
  • [3] Yu J., Jin S.H., Raju K., Lee Y., Lee H.K., Ceram. Int, 47, pp. 31202-31213, (2021)
  • [4] Kozawa T., Fukuyama K., Kushimoto K., Ishihara S., Kano J., Kondo A., Naito M., Sci. Rep, 11, 8 pp, (2021)
  • [5] Yokoyama T., Taniyama Y., Jimbo G., Zhao Q.Q., J. Soc. Pow. Technol. Jap, 28, pp. 751-758, (1991)
  • [6] Kotake N., Kuboki M., Kiya S., Kanda Y., Adv. Pow. Technol, 22, pp. 86-92, (2011)
  • [7] Knieke C., Sommer M., Peukert W., Pow. Technol, 195, pp. 25-30, (2009)
  • [8] Cundall P.A., Strack O.D.L., Geotechnique, 29, pp. 47-65, (1979)
  • [9] Beinert S., Fragniere G., Schilde C., Kwade A., Chem. Eng. Sci, 134, pp. 648-662, (2015)
  • [10] Sinnott M.D., Cleary P.W., Morrison R.D., Min. Eng, 108, pp. 93-108, (2017)