Upper bound on the speed of sound in nuclear matter from transport

被引:4
作者
Hippert, Mauricio [1 ,2 ,3 ]
Noronha, Jorge [1 ,2 ]
Romatschke, Paul [4 ,5 ]
机构
[1] Urbana Champaign Univ Illinois, Illinois Ctr Adv Studies Universe, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Estado Rio de Janeiro, Inst Fis, Rua Sao Francisco Xavier 524, BR-20550013 Rio De Janeiro, RJ, Brazil
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[5] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
EQUATION-OF-STATE; CAUSALITY; STABILITY; MASS; QCD;
D O I
10.1016/j.physletb.2024.139184
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We point out that there is an upper bound on the speed of sound squared given by cs2 <= 0.781valid for all known systems described by relativistic transient hydrodynamics where calculations of certain ratios of hydrodynamic transport coefficients can be performed from first principles. Assuming this bound is valid for ultradense matter implies that the maximum mass of isolated (non-rotating) neutron stars cannot be larger than 2.7 solar masses.
引用
收藏
页数:7
相关论文
共 148 条
[111]   PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter [J].
Miller, M. C. ;
Lamb, F. K. ;
Dittmann, A. J. ;
Bogdanov, S. ;
Arzoumanian, Z. ;
Gendreau, K. C. ;
Guillot, S. ;
Harding, A. K. ;
Ho, W. C. G. ;
Lattimer, J. M. ;
Ludlam, R. M. ;
Mahmoodifar, S. ;
Morsink, S. M. ;
Ray, P. S. ;
Strohmayer, T. E. ;
Wood, K. S. ;
Enoto, T. ;
Foster, R. ;
Okajima, T. ;
Prigozhin, G. ;
Soong, Y. .
ASTROPHYSICAL JOURNAL LETTERS, 2019, 887 (01)
[112]   On the sound speed in hyperonic stars [J].
Motta, T. F. ;
Guichon, P. A. M. ;
Thomas, A. W. .
NUCLEAR PHYSICS A, 2021, 1009
[113]   Bounds on the speed of sound in dense matter, and neutron star structure [J].
Moustakidis, Ch. C. ;
Gaitanos, T. ;
Margaritis, Ch. ;
Lalazissis, G. A. .
PHYSICAL REVIEW C, 2017, 95 (04)
[114]  
Mroczek D, 2023, Arxiv, DOI arXiv:2309.02345
[115]   Equations of state for supernovae and compact stars [J].
Oertel, M. ;
Hempel, M. ;
Klahn, T. ;
Typel, S. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
[116]   STABILITY AND CAUSALITY IN THE ISRAEL-STEWART ENERGY FRAME-THEORY [J].
OLSON, TS .
ANNALS OF PHYSICS, 1990, 199 (01) :18-36
[117]   Hadron resonance gas model with repulsive mean-field interactions: Specific heat, isothermal compressibility and speed of sound [J].
Pal, Somenath ;
Kadam, Guruprasad ;
Bhattacharyya, Abhijit .
NUCLEAR PHYSICS A, 2022, 1023
[118]  
Patricelli B, 2022, MON NOT R ASTRON SOC, V513, P4159, DOI 10.1093/mnras/stac1167
[119]   Unified equations of state for cold non-accreting neutron stars with Brussels-Montreal functionals - I. Role of symmetry energy [J].
Pearson, J. M. ;
Chamel, N. ;
Potekhin, A. Y. ;
Fantina, A. F. ;
Ducoin, C. ;
Dutta, A. K. ;
Goriely, S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (03) :2994-3026
[120]   Remarks on nuclear matter: How an ω0 condensate can spike the speed of sound, and a model of Z(3) baryons [J].
Pisarski, Robert D. .
PHYSICAL REVIEW D, 2021, 103 (07)