Native Defect-Dependent Ultrafast Carrier Dynamics in p-Type Dopable Wide-Bandgap NiO

被引:1
作者
Li, Zhan Hua [1 ,2 ]
He, Jia Xing [3 ,4 ]
Li, Jia Yu [3 ]
Xu, Ke [1 ]
Lv, Xiao Hu [2 ]
Li, Ming-de [3 ]
Liu, Chao Ping [2 ]
Yu, Kin Man [5 ]
Ye, Jian Dong [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China
[2] Shantou Univ, Dept Phys, Shantou 515063, Guangdong, Peoples R China
[3] Shantou Univ, Dept Chem, Shantou 515063, Guangdong, Peoples R China
[4] Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[5] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
CHARGE; TRANSPORT; VACANCIES; ELECTRON;
D O I
10.1021/acs.jpclett.4c02959
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NiO is a wide-bandgap p-type metal oxide that has extensive applications in optoelectronics and photocatalysts. Understanding the carrier dynamics in p-type NiO is pivotal for optimizing device performance, yet they remain largely unexplored. In this study, we employed femtosecond transient absorption spectroscopy to delve into the dynamics of photogenerated carriers in NiO films containing distinct prominent native defects: undoped NiO with oxygen vacancies (V O) and O-rich NiO (denoted as NiO1+delta) with nickel vacancies (V Ni). Our findings unveil significant disparities between the two types of NiO thin films. The undoped NiO film exhibits a broad photoinduced absorption signal spanning the spectral range of 360-600 nm, whereas a photobleaching signal within the spectral range of 400-600 nm is observed in the O-rich NiO1+delta film, which can be attributed to their unique native defects. We ascertain that the fast formation of small electron polarons (SEPs) occurs within a delay time of approximately 200 fs. Subsequently, the photogenerated carriers undergo rapid trapping by localized states (e.g., grain boundary states) in undoped NiO and O-rich NiO1+delta within time scales of around 1-8 and 5-7 ps, respectively, followed by relatively slow trapping and recombination processes via native defects V O and V Ni within time scales of approximately 200 ps and similar to 2 ns, respectively. These findings illuminate the fundamental processes governing carrier dynamics in NiO thin films with different native defects, offering crucial insights for the advancement of NiO-based devices.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 62 条
  • [1] Dixon S.C., Scanlon D.O., Carmalt C.J., Parkin I.P., n-Type Doped Transparent Conducting Binary Oxides: An overview, J. Mater. Chem. C, 4, 29, pp. 6946-6961, (2016)
  • [2] Ye Z., He H., Jiang L., Co-doping: An Effective Strategy for Achieving Stable p-Type ZnO Thin Films, Nano Energy, 52, pp. 527-540, (2018)
  • [3] Xie C., Lu X.-T., Tong X.-W., Zhang Z.-X., Liang F.-X., Liang L., Luo L.-B., Wu Y.-C., Recent Progress in Solar Blind Deep-Ultraviolet Photodetectors Based on Inorganic Ultrawide Bandgap Semiconductors, Adv. Funct. Mater., 29, 9, (2019)
  • [4] Zhou F., Gong H., Xiao M., Ma Y., Wang Z., Yu X., Li L., Fu L., Tan H.H., Yang Y., Ren F.-F., Gu S., Zheng Y., Lu H., Zhang R., Zhang Y., Ye J., An Avalanche-and-Surge Robust Ultrawide-Bandgap Heterojunction for Power Electronics, Nat. Commun., 14, 1, (2023)
  • [5] Cai X., Wei S.-H., Perspective on the Band Structure Engineering and Doping Control of Transparent Conducting Materials, Appl. Phys. Lett., 119, 7, (2021)
  • [6] Green A.J., β-Gallium Oxide Power Electronics, APL Mater., 10, 2, (2022)
  • [7] Fan J.C., Sreekanth K.M., Xie Z., Chang S.L., Rao K.V., p-Type ZnO Materials: Theory, Growth, Properties and Devices, Prog. Mater. Sci., 58, 6, pp. 874-985, (2013)
  • [8] Zhang J., Dong P., Dang K., Zhang Y., Yan Q., Xiang H., Su J., Liu Z., Si M., Gao J., Kong M., Zhou H., Hao Y., Ultra-Wide Bandgap Semiconductor Ga<sub>2</sub>O<sub>3</sub> Power Diodes, Nat. Commun., 13, 1, (2022)
  • [9] Hautier G., Miglio A., Ceder G., Rignanese G.M., Gonze X., Identification and Design Principles of Low Hole Effective Mass p-Type Transparent Conducting Oxides, Nat. Commun., 4, (2013)
  • [10] Kumagai Y., Computational Screening of p-Type Transparent Conducting Oxides Using the Optical Absorption Spectra and Oxygen-Vacancy Formation Energies, Phys. Rev. Applied, 19, 3, (2023)