Distributed Event-Triggered Nonconvex Optimization under Polyak-Lojasiewicz Condition

被引:0
作者
Gao, Chao [1 ]
Xu, Lei [1 ]
Zhang, Kunpeng [1 ]
Li, Yuzhe [1 ]
Liu, Zhiwei [2 ]
Yang, Tao [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
来源
2024 18TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, ICARCV | 2024年
基金
中国国家自然科学基金;
关键词
Distributed nonconvex optimization; Dynamic event-triggered mechanism; Linear convergence; Polyak-Lojasiewicz condition; SYSTEMS;
D O I
10.1109/ICARCV63323.2024.10821649
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the distributed nonconvex optimization problem, where the goal is to minimize the average of local nonconvex cost functions through local information exchange. Firstly, we propose a distributed optimization algorithm that integrates the gradient tracking method with a dynamic event-triggered communication scheme, thereby reducing communication overhead. Secondly, we demonstrate that the algorithm linearly converges to the global optimum under the Polyak-Lojasiewicz condition, which indicates that every stationary point is a global minimizer. The numerical experiment is presented to validate the theoretical results and confirm the algorithm's effectiveness.
引用
收藏
页码:930 / 935
页数:6
相关论文
共 50 条
  • [1] Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak-Lojasiewicz Condition
    Xu, Lei
    Yi, Xinlei
    Deng, Chao
    Shi, Yang
    Chai, Tianyou
    Yang, Tao
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (10) : 5746 - 5758
  • [2] Dynamic Regret Bounds for Constrained Online Nonconvex Optimization Based on Polyak-Lojasiewicz Regions
    Mulvaney-Kemp, Julie
    Park, SangWoo
    Jin, Ming
    Lavaei, Javad
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (02): : 599 - 611
  • [3] Convergence rates for the heavy-ball continuous dynamics for non-convex optimization, under Polyak-Lojasiewicz condition
    Apidopoulos, Vassilis
    Ginatta, Nicolo
    Villa, Silvia
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (03) : 563 - 589
  • [4] Linear convergence of event-triggered distributed optimization with metric subregularity condition
    Yu, Xin
    Cheng, Songsong
    Qiu, Jianbin
    Fan, Yuan
    ASIAN JOURNAL OF CONTROL, 2025, 27 (02) : 750 - 764
  • [5] Distributed Optimization With Asynchronous Computation and Event-Triggered Communication
    Dong, Ziwei
    Jin, Yaochu
    Mao, Shuai
    Ren, Wei
    Du, Wei
    Tang, Yang
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (02) : 1084 - 1099
  • [6] Distributed optimization for economic power dispatch with event-triggered communication
    Shi, Xiasheng
    Zheng, Ronghao
    Lin, Zhiyun
    Yan, Gangfeng
    ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2412 - 2421
  • [7] Gradient-Push Algorithm for Distributed Optimization With Event-Triggered Communications
    Kim, Jimyeong
    Choi, Woocheol
    IEEE ACCESS, 2023, 11 : 517 - 534
  • [8] Stochastic Event-Triggered Distributed Fusion Estimation Under Jamming Attacks
    Li, Li
    Niu, Mengfei
    Xia, Yuanqing
    Yang, Hongjiu
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2021, 7 : 309 - 321
  • [9] Sampled-data Based Distributed Convex Optimization with Event-triggered Communication
    Liu, Jiayun
    Chen, Weisheng
    Dai, Hao
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (06) : 1421 - 1429
  • [10] Distributed Subgradient Method for Constrained Convex Optimization with Quantized and Event-Triggered Communication
    Hayashi, Naoki
    Ishikawa, Kazuyuki
    Takai, Shigemasa
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (02) : 428 - 434