Improved YOLOv5 for Road Disease Detection

被引:0
|
作者
Wu, Guangfu [1 ,2 ]
Liangl, Longxin [1 ,2 ]
Liu, Hao [1 ,2 ]
Li, Yun [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Software Engn, Chongqing, Peoples R China
[2] Chongqing Wukang Technol Co Ltd, Chongqing, Peoples R China
来源
2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024 | 2024年
关键词
YOLOv5; Road disease detection; Deep learning; Image processing;
D O I
10.1109/DOCS63458.2024.10704249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid detection and high accuracy are crucial for effective road disease detection in road maintenance. This study proposes an improved YOLOv5 algorithm to address the issues of poor efficiency and low accuracy in traditional road disease detection methods. First, an enhanced attention module, Mixed Attention Squeeze-and-Excitation (MASE), is integrated into the backbone network. This module improves feature extraction in complex backgrounds by enhancing foreground and background information discrimination. It significantly refines detail processing in scenarios where diverse and intricate background elements obscure or confuse disease features. Second, the original PANet feature fusion framework is enhanced with a cross-layer enhancement network (CLEN), improving the fusion of small-scale features. This enhancement makes it more efficient at processing feature information across different scales, thereby addressing the issue of tiny disease features disappearing during multiple downsampling stages. A new target detection bounding box loss function, Hybrid IoU Loss (HIoU), is also designed to provide a more comprehensive loss calculation. This function effectively addresses the challenge of detecting irregularly shaped diseases. Experimental results demonstrate that the improved algorithm significantly outperforms the original algorithm, with mAP values increased by 10.4 % on the CWNU(China West Normal University) dataset and 2.3 % on the RDD2022 dataset.
引用
收藏
页码:781 / 786
页数:6
相关论文
共 50 条
  • [21] Pavement damage detection model based on improved YOLOv5
    He T.
    Li H.
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2024, 57 (02): : 96 - 106
  • [22] Small Object Detection Method based on Improved YOLOv5
    Gao, Tianyu
    Wushouer, Mairidan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 144 - 149
  • [23] Small gastric polyp detection based on the improved YOLOv5
    Wu, Linfei
    Liu, Jin
    Yang, Haima
    Huang, Bo
    Liu, Haishan
    Cheng, Shaowei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71773 - 71788
  • [24] Helmet wearing detection algorithm based on improved YOLOv5
    Liu, Yiping
    Jiang, Benchi
    He, Huan
    Chen, Zhijun
    Xu, Zhenfa
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [25] Detection of Cotton Seed Damage Based on Improved YOLOv5
    Liu, Zhicheng
    Wang, Long
    Liu, Zhiyuan
    Wang, Xufeng
    Hu, Can
    Xing, Jianfei
    PROCESSES, 2023, 11 (09)
  • [26] Classroom Anomalous Behavior Detection Based On Improved YOLOv5
    Yao, Fu
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2025, 28 (07): : 1473 - 1481
  • [27] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [28] Object Detection of Individual Mangrove Based on Improved YOLOv5
    Ma Yongkang
    Liu Hua
    Ling Chengxing
    Zhao Feng
    Jiang Yi
    Zhang Yutong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [29] STD-Yolov5: a ship-type detection model based on improved Yolov5
    Ning, Yue
    Zhao, Lining
    Zhang, Can
    Yuan, Zhixin
    SHIPS AND OFFSHORE STRUCTURES, 2024, 19 (01) : 66 - 75
  • [30] Retinal Disease Detection Based on Optical Coherence Tomography Images Using Improved YOLOv5
    Bi, Xiaojun
    Han, Lu
    2021 IEEE USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2021, : 45 - 46