Improved YOLOv5 for Road Disease Detection

被引:0
|
作者
Wu, Guangfu [1 ,2 ]
Liangl, Longxin [1 ,2 ]
Liu, Hao [1 ,2 ]
Li, Yun [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Software Engn, Chongqing, Peoples R China
[2] Chongqing Wukang Technol Co Ltd, Chongqing, Peoples R China
来源
2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024 | 2024年
关键词
YOLOv5; Road disease detection; Deep learning; Image processing;
D O I
10.1109/DOCS63458.2024.10704249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid detection and high accuracy are crucial for effective road disease detection in road maintenance. This study proposes an improved YOLOv5 algorithm to address the issues of poor efficiency and low accuracy in traditional road disease detection methods. First, an enhanced attention module, Mixed Attention Squeeze-and-Excitation (MASE), is integrated into the backbone network. This module improves feature extraction in complex backgrounds by enhancing foreground and background information discrimination. It significantly refines detail processing in scenarios where diverse and intricate background elements obscure or confuse disease features. Second, the original PANet feature fusion framework is enhanced with a cross-layer enhancement network (CLEN), improving the fusion of small-scale features. This enhancement makes it more efficient at processing feature information across different scales, thereby addressing the issue of tiny disease features disappearing during multiple downsampling stages. A new target detection bounding box loss function, Hybrid IoU Loss (HIoU), is also designed to provide a more comprehensive loss calculation. This function effectively addresses the challenge of detecting irregularly shaped diseases. Experimental results demonstrate that the improved algorithm significantly outperforms the original algorithm, with mAP values increased by 10.4 % on the CWNU(China West Normal University) dataset and 2.3 % on the RDD2022 dataset.
引用
收藏
页码:781 / 786
页数:6
相关论文
共 50 条
  • [1] DDVC-YOLOv5: An Improved YOLOv5 Model for Road Defect Detection
    Zhong, Shihao
    Chen, Chunlin
    Luo, Wensheng
    Chen, Siyuan
    IEEE ACCESS, 2024, 12 : 134008 - 134019
  • [2] Improved YOLOv5 Method for Fall Detection
    Peng, Jun
    He, Yuanmin
    Jin, Shangzhu
    Dai, Haojun
    Peng, Fei
    Zhang, Yuhao
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 504 - 509
  • [3] Microalgae detection based on improved YOLOv5
    Duan, Ziqiang
    Xie, Ting
    Wang, Lucai
    Chen, Yang
    Wu, Jie
    IET IMAGE PROCESSING, 2024, 18 (10) : 2602 - 2613
  • [4] Pine wilt disease detection algorithm based on improved YOLOv5
    Du, Zengjie
    Wu, Sifei
    Wen, Qingqing
    Zheng, Xinyu
    Lin, Shangqin
    Wu, Dasheng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [5] Road Defect Detection Based on Yolov5 Algorithm
    Lei, Yankun
    Wang, Baoping
    Zhang, Nan
    Sun, Qin
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 488 - 493
  • [6] STBNA-YOLOv5: An Improved YOLOv5 Network for Weed Detection in Rapeseed Field
    Tao, Tao
    Wei, Xinhua
    AGRICULTURE-BASEL, 2025, 15 (01):
  • [7] Outdoor Garbage Detection Based on Improved YOLOv5
    Chen Shengxuan
    Wang Aimin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (22)
  • [8] Driver Attention Detection Based on Improved YOLOv5
    Wang, Zhongzhou
    Yao, Keming
    Guo, Fuao
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [9] An improved lightweight object detection algorithm for YOLOv5
    Luo, Hao
    Wei, Jiangshu
    Wang, Yuchao
    Chen, Jinrong
    Li, Wujie
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [10] Application of improved YOLOV5 in plate defect detection
    Xiong, Chenglong
    Hu, Sanbao
    Fang, Zhigang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022,